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Abstract

I show that the risk premium in S&P 500 options is negative overnight, outside of regular
exchange trading hours, but insignificant intraday, when the underlying equities are highly
liquid. Intermediaries’ inventory risk can explain this finding: Dealers have a net-short
position in put options, which exposes them to overnight equity “gap risk”, the risk that
equity prices change overnight, since overnight equity liquidity is too low for continuous
delta-hedging. In contrast, intraday equity liquidity presents few such obstacles. Dealers’
resulting inventory risk predicts overnight option risk premia. Supporting this channel, the
growth of overnight equity trading around 2006 reduces the magnitude of the option risk
premium. I conclude that the risk premium in S&P 500 options results from the combination
of options demand and overnight equity illiquidity, which expose risk-averse intermediaries
to unhedgeable inventory risk.
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In the seminal model of Black and Scholes (1973) and Merton (1973), delta-hedged option returns
equal the risk-free rate, since a continuously adjusted delta hedge eliminates options’ exposure
to equity market risk. However, empirical evidence shows that average delta-hedged option re-
turns are significantly negative, especially for put options on equity indices.! As a result, a large
literature seeks to rationalize delta-hedged option returns, commonly referred to as “option risk
premia”. These models can be separated into two classes: Representative-investor models, where
option risk premia reflect representative-investors’ consumption risk, and intermediary models,
where dealers sell options to investors and negative option risk premia reflect compensation for
the resulting inventory risk.?

This paper makes four contributions, using data on S&P 500 equity index options. (i) I show
that put option risk premia are significantly negative overnight, where regular equity exchanges
are closed and the Merton assumption of continuous delta-hedging is violated, but put option risk
premia are not significantly different from the risk-free rate intraday, when U.S. equity markets
are highly liquid and there are few obstacles to continuous delta-hedging. I find no risk-premia in
call options over my sample period (2011 to 2023).% (i) Addressing the difference between puts
and calls, I show that dealers’ short position in puts exposes them to the risk of overnight equity
price changes (equity price “gaps”). In contrast, dealers’ inventory of call options is balanced
between long and short positions, resulting in relatively little exposure to gap risk. This finding
suggests that equity liquidity impacts option risk premia through dealers’ inventory risk. (i)
Dealers’ inventory exposure to overnight equity price gaps predicts overnight option risk premia.
Level and predictability of overnight option risk premia are significantly elevated in times of
heightened equity return volatility. (iv) I show that increasing overnight equity liquidity reduces
the option risk premium. Around 2006, several market changes — such as regulation “national
market systems” and the acquisition of major “electronic communication networks” by the Nyse
and the Nasdaq — increased overnight equity trade volumes from Monday to Friday, but left
the weekend period largely untradable. I document a significant reduction in the magnitude of

Monday-to-Friday option risk premium relative to Friday-to-Monday option risk premium around

!See Coval and Shumway (2001), Bakshi and Kapadia (2003), and many subsequent papers.

2Bates (2022) discusses this separation of option pricing models.

3Following the literature, I compare the returns of out-of-the-money puts to out-of-the-money calls to avoid overlapping
estimates due to put-call parity, i.e., I study puts whose strike price is below the current price of the underlying and calls
whose strike price is above the current price of the underlying.



that time.

Relating my empirical results to theory, I conclude that the risk premium in S&P 500 options
results from the combination of options demand and overnight equity illiquidity, which expose
risk-averse intermediaries to unhedgeable inventory risk. Consumption-risk models of option risk
premia could account for my findings if consumption-risk, or investor risk aversion, were specific
to overnight periods. I reject this explanation, since there are significant intraday risk premia
in other asset classes (Aleti and Bollerslev, 2024). Thus, I conclude that representative-investor
consumption risk alone does not account for option risk premia. Instead, such consumption
risk leads to options demand, which is reflected in option risk premia through dealers’ resulting
unhedgeable inventory risk. My results are important for two reasons. For one, options are
widely used in academia for inference on investor preferences and beliefs. My results imply that
option risk premia reflect a combination of the investor pricing kernel and the intermediary pricing
kernel. For another, options are widely used for hedging purposes, with hundreds of billions
of dollars in outstanding contracts across markets. My results predict that increasingly liquid
(overnight) markets lead to a reduction in option risk premia, thus reducing investor hedging

costs and improving risk sharing. Next, I describe how I derive each of my results.

S&P 500 Options. This paper studies the market for options on the S&P 500 equity index. This
market has three advantages: For one, S&P 500 options constitute the worlds most liquid exchange-
traded options market, with an average monthly trade volume of $170bn as of 2022, enabling a
return decomposition at high frequency, and highlighting the economic relevance of the market. In
addition, S&P 500 options trade exclusively on the Chicago Board Options Exchange, which sells
comprehensive option positions data. Finally, the underlying equities are highly liquidity intraday,
during regular exchange trading hours, but relatively illiquid overnight, providing an instrument
for dealers’ inventory risk. Regular equity trading hours are 09:30 to 16:00 (E.T.), Monday to
Friday, and the relatively illiquid pre-market hours cover only 04:00 to 09:30, while post-market
hours cover 16:00 to 20:00. There is no equity trading on the major U.S. stock exchanges between
20:00 and 04:00. Equity futures trade almost 24 hours a day from Sunday 18:00 to Friday 17:00,
but overnight volumes are reduced by an order of magnitude, especially between 20:00 and 04:00,
when the major stock exchanges are closed. S&P 500 option trading hours are 09:30 to 16:15 and

thus almost identical to equity trading hours.



S&P 500 option risk premia reside in puts, overnight. In the first part of the paper, I
estimate option risk premia over day- and night periods. I measure option risk premia as delta-
hedged option returns, which I subsequently refer to as option returns. This measurement of
option risk premia is standard in the literature. Equity options are naturally exposed to equity
market risk, but in the setting of Merton (1973) continuous delta-hedging via trades in equities
reduces diffusive equity market risk to zero. Delta-hedged option returns reflect the remaining
risk premia (Bates, 2022). I measure intraday option returns from 09:45 to 16:15 and overnight
returns from 16:15 to 09:45. Measuring open prices after a 15 minute gap reduces potential bias
from illiquid open quotes. Returns are delta-hedged at the start of the respective period and I
show robustness of my findings to different methods for calculating delta.

Panel (a) of Figure 1 summarizes the main finding of this section: S&P 500 put option returns
are insignificant intraday, while being highly significantly negative overnight. Call option returns
are insignificant over both day and night periods. My findings differ from Muravyev and Ni (2020),
who estimate option risk premia over day- and night periods and estimate positive intraday option
risk premia. In my sample, I find that positive intraday option risk premia result from options that
do not trade at the open. Such options likely display positive intraday returns because overnight
news is not fully reflected in their illiquid open quotes and, due to options’ payoff profiles, news
for options is asymmetrically positive. Excluding such illiquid opening quotes yields insignificant
intraday risk premia. In addition, I find that overnight put option risk premia are concentrated
in short-maturity, deep out-of-the-money puts, indicating that these options are particularly risky

overnight. Intraday put option risk premia are insignificant across maturity or moneyness.

Dealers are exposed to overnight equity price gaps. To study the source of overnight put
option risk premia, I estimate dealers’ option inventory from a comprehensive dataset of S&P
500 option trades. I measure dealers’ daily buy- and sell trade volume in S&P 500 options, and
cumulate the daily net-buys (buys minus sells) into dealers’ net-positions. Panel (b) of Figure
1 summarizes the main finding of this section. The dealer sector has a substantial net-short
position in S&P 500 puts (on average about 19m contracts), while dealers’ net-position in calls is
comparatively small. Equivalent to the concentration of overnight put option risk premia, dealers’
short put position is concentrated in short-maturity, deep out-of-the-money puts. I conclude that

option risk premia occur where dealers are short (in puts) and liquidity is low (overnight).



Figure 1: Option Risk Premia Occur Where Dealers are Short and Liquidity is Low
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Note: This figure shows that option risk premia between 2011 and 2023 materialize overnight in put options, where dealers
have a net-short position. Panel (a) shows 95% confidence intervals for return averages of out-of-the-money S&P 500 put-
and call options. Returns are measured over “Day” periods between 09:45 and 16:15 and over “Night” periods between
16:15 and 09:45 (E.T.). Returns are delta-hedged at the beginning of the respective period. Panel (b) shows dealers’ average
net-position in S&P 500 options. The net-position is the cumulative sum of dealers’ net-buys, where net-buys are the number
of options bought minus the number of options sold. Returns are in percent and positions are in millions.

Going beyond the number of options in dealers’ inventory, I estimate dealers’ inventory expo-
sure to gap risk as the return on dealers’ option portfolio for different hypothetical returns of the
underlying equities. I assume that dealers’ option position is initially delta-hedged, but hedges are
subsequently not adjusted. To that end, I simulate option returns from the Black-Scholes-Merton
pricing model. I find that negative equity market returns lead to dealer inventory losses, while
positive equity market returns have relatively little impact. This is because dealers are short out-
of-the-money puts and delta-hedged returns on a short position in out-of-the-money puts are left
skewed. l.e., losses from negative market returns are more pronounced than gains from positive
market returns. Importantly, I explicitly estimate the risk of a large equity price move, rather than
the standard approach of relying on marginal analysis based on option greeks, such as gamma.

My novel measurement of dealers’ inventory risk highlights the conceptual innovation in this

paper, which addresses the high risk-premia in deep out-of-the-money puts. Following Garleanu,

Pedersen, and Poteshman (2009), the extant literature on option dealer inventory risk has focused



on dealers’ net-gamma, which is the sum-product of dealers’ net-position and options’ gamma.*

Net-gamma measures the local curvature of the value of dealers’ option portfolio around the current
price of the underlying, which approximates dealers’ risk from jumps- and discrete trade time in
the underlying, since jumps in the S&P 500 are small and sophisticated investors can trade at
very high frequency, i.e., since jumps and discrete trade time will leave the underlying within a
narrow range of its current value. Net-gamma cannot explain equity index put option risk premia,
since put option risk premia are especially pronounced in out-of-the-money puts, while gamma is
more pronounced in at-the-money puts. If gamma captured dealers’ primary risk exposure, then
at-the-money puts should appear most expensive, which is rejected in the data. In contrast, I
provide evidence that dealers are exposed to the entire overnight return in the S&P 500, even if
there are no jumps in the S&P 500, due to the daily market close of regular equity exchanges
and the resulting overnight equity illiquidity. Overnight S&P 500 returns have reached —3.8%
over my sample and I show that the returns of out-of-the-money puts are most affected by such
large returns in the underlying. Thus, I explain why out-of-the-money puts are especially risky
for dealers and consequently why risk premia in such options are especially pronounced.

Next, I demonstrate that overnight equity liquidity is too low for dealers to continuously adjust
their delta-hedges. 1 estimate dealers’ liquidity demand for the adjustment of delta-hedges, and
find that in case of a —5% return in the S&P 500, dealers need to sell about $8bn worth of
equities in order to remain fully delta-hedged. For comparison, I show that the average overnight
volume of the most liquid S&P 500 futures contract amounts to only about $0.5bn an hour for
most parts of the night. Futures contracts trade almost 24 hours a day on 5 days a week and are
the most natural instruments for professional investors outside of regular exchange-trading hours.
The average intraday volume of the most liquid S&P 500 futures contract amounts to $20bn an
hour, with an additional $27bn hourly trade volume in the underlying S&P 500 constituent stocks
themselves. I conclude that overnight equity market illiquidity presents a substantial obstacle for

dealers’ inventory delta-hedging, while intraday liquidity presents few obstacles.

Dealers’ gap risk exposure predicts option risk premia. I regress option risk premia on
lagged dealer gap risk exposure, and find that dealers’ gap risk exposure predicts option risk

premia overnight. A one standard deviation increase in dealers’ risk exposure predicts a 57 basis

4Gamma is the second derivative of the option price with regards to the price of the underlying. That is, gamma measures
the curvature of the option price function around the current price of the underlying.



Figure 2: Increasing Equity Trade Volume Lowers Option Risk Premia
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Note: This figure shows cumulative returns of out-of-the-money, short-maturity S&P 500 put options. The top blue line
cumulates returns from Monday to Friday, the bottom red-line cumulates returns from Friday to Monday. Returns are
measured between trading days’ market close at 16:15 (E.T.) and delta-hedged at the beginning of the respective period.
Returns are in logs and are scaled to the same 10% annualized volatility. The vertical line indicates the emergence of
overnight equity trading around 2006.01.
points decrease in overnight option returns. In a placebo test, I find that dealers’ gap risk exposure
predicts only a 4 basis points decrease in intraday option returns, which is not significant.
Testing another prediction of intermediary option pricing theory, I compare periods of high-
and low equity market volatility. I find that, over high volatility periods, overnight put option
risk premia are significantly elevated. In addition, I find significantly elevated predictive power
of dealers’ gap risk exposure for overnight option risk premia over such periods. Both results are

consistent with the hypothesis that dealers require more compensation for their gap risk exposure

over periods where large overnight equity price gaps are more likely.

Overnight equity trading reduces option risk premia. Finally, I exploit the increase of
overnight equity trading around 2006 to study the impact of equity liquidity on option risk premia.
Around 2006, several market changes, like the adoption of regulation “national market systems”

(nms) and the acquisition of major “electronic communication networks” by the Nyse and the
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Nasdaq, increased overnight equity trade volumes between Mondays and Fridays, but left the
weekend period largely untradable.’ This emergence of overnight equity trading yields a treatment
group (Monday-to-Friday option risk premia) and a control group (Friday-to-Monday option risk
premia). I document a significant reduction in the magnitude of Monday-to-Friday option risk
premia relative to Friday-to-Monday option risk premia around that time. Figure 2 illustrates this
result. Around 2006, a large and persistent gap emerges between the cumulative returns of S&P
500 put options Monday to Friday and Friday to Monday. I do not compare overnight returns
to intraday returns around 2006, due to the lack of liquid high-frequency option prices around
that time. These results relate to Dew-Becker and Giglio (2023), who show a decrease in option
risk premia around the Great Financial Crisis. My findings suggest the increasing liquidity of

overnight equity markets as an explanation.

Implications. My results suggest that S&P 500 option risk premia largely result from the combi-
nation of options demand and illiquidity in the underlying asset, which expose risk-averse interme-
diaries to unhedgeable inventory risk. This finding has three implications. (i) Option risk premia
depend on dealers’ inventory risk. Not all options should be expected to display insignificant
intraday risk premia, since most underlying assets are not as liquid intraday as the S&P 500. This
finding can potentially explain why extant estimates of the volatility risk premium vary between
options on different underlying assets (Heston and Todorov, 2023). Similarly, I conclude that
average intraday S&P 500 equity liquidity is sufficiently high, relative to dealers’ option inventory,
that average intraday option risk premia are insignificant. Significant intraday option risk premia
might still arise in times of reduced liquidity or exceptional (jump) risk. E.g., Johannes, Kaeck,
and Seeger (2023) find risk premia in S&P 500 options at high frequency around FOMC announce-
ments. (i) Security market design has a large impact on option risk premia and regulators who
want to lower hedging costs for option market customers should consider the potentially beneficial
impact of around-the-clock equity market liquidity. (ii7) Investor demand for options translates
into option risk premia through dealers’ resulting unhedgeable inventory risk. As a result, option
risk premia likely reflect a combination of the investor pricing kernel and the intermediary pricing

kernel.

5In 2005, the Nasdaq held an initial public offering and purchased Instinet shortly thereafter. In 2006, the Nyse became
a public company and shortly thereafter acquired Archipelago ECN, forming Nyse Arca.



I. Literature and Contribution

This paper contributes to several strands of the literature. First, this paper contributes to the
literature on option risk premia. In the seminal model of Merton (1973), a continuously adjusted
delta-hedge — achieved through trades in the underlying asset — reduces options’ return variance
to zero and thus reduces options’ expected delta-hedged return to the risk free rate. However, Coval
and Shumway (2001), Bakshi and Kapadia (2003), and many subsequent papers, find delta-hedged
option returns to be significantly negative. I show that option risk premia are significantly negative
outside of regular exchange trading hours, where the Black-Scholes assumption of continuous delta-
hedging is violated, but delta-hedged returns are not significantly different from the risk-free rate
intraday, when U.S. equity markets are highly liquid and there are few obstacles to continuous
delta-hedging.

Second, this paper contributes to the literature on intermediaries in option markets. Bollen and
Whaley (2004) and Garleanu, Pedersen, and Poteshman (2009) show demand pressure for options,
which predicts option risk premia. Adding to this literature, I provide evidence that overnight
equity illiquidity exposes option dealers to inventory risk, which can explain the negative risk
premia in put options. Previous estimates of dealers’ inventory risk do not explain the risk premia
in deep out-of-the-money puts, since they focus on gamma, which is highest for at-the-money
options. Dew-Becker and Giglio (2023) show a decline in option risk premia since about 2010, and
suggest a decline in market frictions as a possible explanation. I explain the decline in option risk
premia with the increasing liquidity of overnight markets.

A growing literature links option risk premia to the risk of rare “tail” events in the price of
the underlying asset (e.g., Bollerslev and Todorov (2011), Andersen, Fusari, and Todorov (2015)
and Andersen, Fusari, and Todorov (2017)). I find that the risk of large negative returns in the
S&P 500 is reflected in the risk premia of S&P 500 options over periods where the S&P 500 is
relatively illiquid, due to dealers’ inventory risk. Significant intraday jump risk premia might still
arise over periods where S&P 500 liquidity is unusually low, or jump risk is unusually high (e.g.,
around FOMC announcements (Johannes, Kaeck, and Seeger, 2023)).

The idea that some asset risk premia can be understood as compensation for intermediaries’
inventory risk is well established (e.g. Stoll (1978), Amihud and Mendelson (1980) and Grossman

and Miller (1988)). In such models, asset prices reflect dealers’ inventory due to dealers’ non-linear



costs (Amihud and Mendelson, 1980) or due to dealers’ risk aversion (O’hara and Oldfield, 1986).
Dealers’ effective risk aversion can arise for example from regulatory constraints, risk-management
constraints, and funding constraints (Brunnermeier and Pedersen, 2009). Chen, Joslin, and Ni
(2019) provide evidence that option dealer constraints are related to funding constraints. In this
paper, I take dealers’ effective risk-aversion as given, and instead focus on the question why dealers’
option inventory exposes them to unhedgeable risk.

This paper contributes to the recent literature on liquidity premia in options markets. Cao
and Han (2013) and Kanne, Korn, and Uhrig-Homburg (2023) show that stock option risk premia
decrease in the liquidity of the underlying stocks. Christoffersen, Feunou, Jeon, and Ornthanalai
(2021) estimate a model where the crash probability of the S&P 500 depends on its liquidity and
find reduced option pricing errors. I contribute to this literature in four ways. (a) I study the
difference between intraday and overnight option risk premia for the same options, thus alleviating
concerns that illiquid stocks might differ in important ways from liquid stocks. (b) I show that the
impact of underlying liquidity on option risk premia is conditional on dealer positions. (c¢) I show
that option risk premia can turn insignificant over periods where the underlying asset is extremely
liquid. (d) I exploit the emergence of overnight equity trading to point towards a causal link from
equity liquidity to option risk premia.

Finally, this paper contributes to the recent literature on day-night patterns in options returns.
Jones and Shemesh (2018) show that option risk premia are especially negative Friday to Monday
relative to the rest of the week, which they attribute to a possible neglect of options’ time decay by
option traders. I explain low over-weekend option risk premia with the especially low equity trade
volumes over such periods. Sheikh and Ronn (1994) find no significant difference between intraday
and overnight option returns, likely due to their small sample. Muravyev and Ni (2020) find that
intraday option returns are positive and attribute this finding to mispricing. In my sample, I find
that this result stems from options that do not trade at market open. Excluding such illiquid
quotes yields insignificant intraday option returns, which are consistent with an inventory-risk
explanation. Ortowski, Schneider, and Trojani (2024) develop trading strategies for the study of
skewness risk premia and find associated returns to be elevated overnight, which they attribute
to uncertainty resolution by non-U.S investors. I show that risk premia in S&P 500 options are
generally insignificant intraday, but significantly negative overnight. To the best of my knowledge,

this is the first paper to link overnight option risk premia to intermediary hedging frictions.



There is a growing literature around day-night variation in equity returns. Hendershott, Liv-
dan, and Rosch (2020) show that the capital asset pricing model performs poorly intraday, but
works well overnight. They argue that a model with heterogeneous investors and time-varying con-
straints could rationalize this finding. Bogousslavsky (2021) argues that institutional constraints,
such as elevated margin requirements and lending fees, incentivize arbitrageurs to reduce their
equity positions before the end of the day. Boyarchenko, Larsen, and Whelan (2023) show that
S&P 500 equity returns are unusually high around the open of European trading at 02:00 (E.T.),

which they explain with dealers’ inventory risk management.

II. Markets and Data

This section outlines the market characteristics of S&P 500 options, futures and equities. I briefly

state data sources, while details on variable construction are in the respective sections.

S&P 500 Options. This paper studies S&P 500 equity index (SPX) options, i.e., put- and call
options written on the S&P 500 equity index of U.S. large-cap stocks. SPX options are exchange-
traded exclusively on the Chicago Board Options Exchange (CBOE) and were initially listed in
1983. While SPX option volumes were initially small, volumes have grown to about $200 billion
a month in 2022 and open interest has grown to about $250 billion in 2022. Figure A.9 displays
SPX options’ volume and open interest over time. The SPX options market is the worlds’ largest
and most liquid equity options market. The high option liquidity enables a return decomposition
at high frequency and the large market size makes SPX options an economically relevant market
to study.

The original SPX options expired once a month on that months’ 3"¢ Friday. Recently, the
CBOE has successively added SPXW options with different expiry dates.® To reduce computing
time, I restrict the study of option returns to the standard SPX options, while for options positions
I consider both SPX and SPXW options. Adding SPXW option returns does not change the
findings of this paper. SPX options are liquid across a broad range of strike prices, which occur
every $5. Liquidity is particularly high for out-of-the-money options, which are puts (calls) with

strike prices below (above) the current value of the underlying index. SPX options are European

5Specifically, the CBOE added weekly Friday expiries in 2011.09, Wednesday expiries in 2016.02, Monday expiries in
2016.08, Tuesday expiries in 2022.04, and Thursday expiries in 2022.05.
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options, so they can only be exercises at expiry. Table A.4 contains further contracts specifications

and section A.2 contains further option market details.

S&P 500 Stocks: Day and Night. The S&P 500 equity index is a market-capitalization-
weighted index of the equity value of 500 U.S.-listed firms across a broad range of industries.
Figure A.2 displays cumulative returns of S&P 500 futures and shows that S&P 500 returns are
of similar magnitude over days and nights over my sample. Figure A.4 displays the volatility of
day and night S&P 500 futures returns and shows that day returns are about 30% more volatile
throughout my sample. I conclude that fundamental equity risks are comparable between nights
and days and, if anything, are elevated intraday. Thus, differences in fundamental risk cannot
explain the day night variation in option returns that I document. Section A.3 describes the

market for S&P 500 equities in greater detail.

Data Sources. From CBOE, I obtain SPX option prices and quotes at 15-minute intervals.
Further, I obtain the daily “Open Close Volume” files that allow for the construction of dealer
positions. From OptionMetrics, I obtain SPX option prices and quotes at the daily frequency.
I obtain data on S&P 500 E-mini futures from Boyarchenko, Larsen, and Whelan (2023), who
sample tick-level data of CME traded futures contracts. I obtain data on risk-free rates from the
OptionMetrics IvyDB zero-curve file. Data on daily stock trading volume is from CRSP. High-
frequency stock volumes are from Reuters. Details on variable construction are in the respective

sections, and section A.l provides a summary.

III. Option Risk Premia Reside in Puts, Overnight

This section shows that S&P 500 option risk premia are concentrated in put options, where
they occur over night periods. Negative overnight put risk premia are concentrated in short-
maturity, deep out-of-the money puts. Intraday put risk premia are insignificant across maturity

and moneyness categories.

III.A. Delta-Hedged Returns as Risk Premia

I study delta-hedged option returns to prevent my analysis of option returns to be biased by equity

risk premia. Figure A.10 displays the well-known option payoff profiles and illustrates that call
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(put) options tend to experience positive (negative) returns when the price of the underlying rises.
Historically, U.S. equity returns have been positive, leading to positive (negative) returns of call
(put) options. Delta-hedging controls for this effect and is standard-practice in options pricing
research.”

I calculate delta-hedged option returns as

pi_ PPl = Ay x (SPX, - SPX,)) "
' Pl

where R! is the return of option i over period ¢, P, is the price of option i at the end of period ¢, SPX
is the price of the S&P 500 index and A!_, is the lagged delta of option 7. Thus, the numerator
consists of the dollar change in the option price minus the dollar change in the option price that
can approximately be explained by changes in the price of the S&P 500. The denominator consists
of the lagged option price only. Thus, the equation is based on the assumption that traders do
not require any capital to trade the S&P 500 index. This is a common approach in option pricing
research and a reasonable assumption due to the wide availability of liquid futures contracts during
regular exchange trading hours (Muravyev and Ni, 2020).

An options’ delta is the partial derivative of the option value function with regards to the price
of the underlying asset (A = 25). If an (out of the money put) option has a delta of —0.2 and
the S&P 500 rises by $1 then the option price should fall by approximately $0.2. Delta-hedging
would involve an initial long position in 0.2 units of the index, such that a trader gains $0.2 from
the hedge-position that offset the —$0.2 from the option position. The increasing value of the
underlying SPX likely lead to a less negative option delta of now for example —0.15. To stay
delta-hedged the trader will buy 0.05 units of the SPX, which can involve large dollar trades if
the price of the underlying is high, since delta is in units of the underlying. For example, when
the S&P 500 index value is at 5000, a small delta-adjustment of 0.05, involves a trade of $250.
This example highlights the aspect of delta and delta-hedging that is central to this paper. Delta-
hedging is of first-order importance to reducing the risk of an options portfolio, but delta is a local
linear approximation. Delta changes with the price of the underlying and a trader will have to keep
trading the underlying to remain delta hedged. This paper shows that overnight equity volumes

are too low for dealers to quickly adjust their delta-hedges, which exposes them to unhedgeable

"E.g., Bakshi and Kapadia (2003) and Jones and Shemesh (2018), among many others.
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inventory risk.

III.B. Option Risk Premia: Day vs. Night

Delta-hedged returns of equity index options are highly negative, especially for deep out-of-the-
money short-maturity put options (e.g., Bakshi, Charles, and Chen (1997), Coval and Shumway
(2001) and Bakshi and Kapadia (2003)). In this section, I show that both these patterns are
specific to night periods. S&P 500 put option returns are negative overnight, but not intraday
and overnight put options returns are concentrated in short-maturity out-of-the-money puts, while

intraday put returns do not vary by moneyness or time-to-maturity.

Data: Option Returns. I obtain high-frequency options data from the Chicago Board Options
Exchange (CBOE) for the period of 2006 to 2023. The CBOE dataset aggregates data at the 15
minute frequency, such that the first available observation is at 09:45 (E.T.), 15 minutes after the
regular options market open, and the last available observation is at 16:15, at the regular options
market close. For each of these intervals the dataset provides options’ bid quote, ask quote, and
first-, last-, high- and low- trade price. Further, the dataset provides option volume, open interest
and pre-calculated risk measures like delta and gamma. Andersen, Archakov, Grund, Hautsch, Li,
Nasekin, Nolte, Pham, Taylor, and Todorov (2021) provide a detailed description of high-frequency
option price data for U.S. markets.

To alleviate concerns of liquidity and data errors I apply several filters to the data. I exclude
options with either a zero trade volume on any of the previous three days or a zero trade volume
at the start of the respective return period. l.e., to be included in the night (day) portfolio an
option needs to be traded for three consecutive days and be traded between 16:00 and 16:15 (09:30
and 09:45)) prior to the return period. I discard options with negative lagged bid-ask spreads or
zero lagged bids or lagged mid quotes below $0.05. I discard large hedged or unhedged reversal
returns (returns above 1000% immediately followed by —90% or vice versa). Finally, I discard
observations that violate no-arbitrage bounds.

My main sample period is 2011 to 2023. For one, options are comparatively more liquid over the
later sample, yielding more reliable estimates of risk premia at high frequency. More importantly,
the option positions data, that I describe in the next section, identify option market makers as a

separate group only from 2011 onward. Before 2011, market makers trades have to be inferred as
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Table I: Option Risk Premia: In Puts, Overnight

Mean t-stat Std Skew P10 P50 P90
Panel (a): Puts
Night Return (%) -2.49 -10.34 12.40 9.31 -12.66 -2.50 6.30
Day Return (%) 0.39 1.49 13.51 5.02 -10.38 -1.56 34.64
Night minus Day Return (%) -2.88 -7.28 18.48 0.62 -19.15 -1.34 11.95
Panel (b): Calls
Night Return (%) 0.32 0.64 27.72 10.13 -16.71 -2.41 18.44
Day Return (%) 0.32 0.65 22.75 4.89 -17.03 -3.06 56.58
Night minus Day Return (%) 0.00 0.01 36.38 2.86 -28.60 0.51 25.87

Note: This table shows that put option risk premia are significantly more negative over night periods than day periods,
while there is no such difference for call option risk premia. Panel (a) shows summary statistics for S&P 500 put option
returns, panel (b) contains calls, and both groups are restricted to out-of-the-money options. Within each panel, row 1 (2)
contains returns between 16:15 and 09:45 (09:45 and 16:15). Returns are in percent and delta-hedged at the beginning of
the respective period. The sample period is 2011 to 2023.

the residual to the other trader groups. In the appendix, I show that my main results are robust
to including the early years 2006 to 2010.

I measure night returns from 16:15 to 09:45 (E.T.) and day returns from 09:45 to 16:15. I
measure open prices at 09:45 since my dataset groups options data into 15 minute intervals, which
has the added benefit of alleviating the concern of illiquid open quotes. Throughout the paper, I
use mid-quotes to measure prices. I delta-hedge option returns with S&P 500 E-Mini futures at
the start of the respective period, i.e., the delta-hedge for e.g., night returns is set up at 16:15 and
subsequently not adjusted. I estimate options’ delta from the Black-Scholes-Merton model, where
I set the volatility of the underlying equal to the options’ lagged implied volatility relative to the
BSM model. T lag the implied volatility to avoid biases from the negative correlation between
market volatility and market returns. In robustness checks I show that my results are robust
to alternative delta calculations. Throughout the paper, I report option returns in excess of the
risk-free rate, which does not impact my results, since risk-free rates over the period of a few hours
are negligible.

Table I shows summary statistics for delta-hedged option returns. Panel (a) contains out-of-

the-money put options, panel (b) contains out-of-the-money calls. Over my sample (2011.07 to

2023.08) S&P 500 put option experienced an average night return of —2.49%.® The associated

8 Average returns are not annualized. Option risk premia are very large relative to most other traded assets.
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Table II: Overnight Put Returns Reside Deep Out-of-the-Money at Short-Maturity

Days to Expiry

2-70 71- All

0.00 < |A| <£0.25 Deep Out of the Money -381.7 -14.4 -300.6
(~10.9) (—0.8) (—9.9)

0.25 < |A| < 0.50 Out of the Money -85.4 -22.7 -69.3
(—5.0) (—4.7) (—6.2)

0.50 < |A| < 0.75 In the Money -56.8 -20.1 -45.1
(—5.0) (—4.1) (—4.6)

0.75 < |A| < 1.00 Deep In the Money -68.4 -58.9 -62.7
(—4.0) (~1.6) (—4.0)

All -292.1 -19.6 -228.4
(—11.0) (—1.6) (~10.1)

Note: The table shows average S&P 500 put option returns for eight portfolios, sorted by days to expiry and moneyness.
Returns are measured from option market close at 16:15 to the subsequent market open at 09:45. Returns are in basis points
and are delta-hedged at the beginning of the respective period. Newey-West t-statistics are in brackets. The sample period
is 2011 to 2023.

Newey-West t-statistic exceeds 10. In contrast, put option intraday returns average only 0.39%.
The difference between night and day returns is highly significant. Panel (b) shows that S&P
500 call options experienced an average night return of 0.32% and an equal average day return.
Neither the night return, the day return or the difference between the two is significantly different
from zero for call options.

The appendix contains several robustness tests. Table A.5 reports bootstrapped standard
errors instead of Newey-West t-statistics. Table A.7 regresses the delta-hedged option returns
on contemporaneous returns of the underlying equity index and reports summary stats for the
resulting alphas. Table A.8 divides options’ implied volatilities by 1.3 as inputs into the delta
calculation to account for the volatility risk premium in implied volatilities. Table A.9 delta-
hedges option returns via the pre-calculated deltas in the CBOE dataset.

Table II shows overnight S&P 500 put option returns by option portfolio. Options are sorted
into a portfolio by moneyness and days to expiry at market close and held in that portfolio until the
next market open. Put option risk premia are heavily concentrated in short-maturity, deep out-
of-the-money options, where average night returns amount to —382 basis points. For comparison,
longer maturity deep out-of-the-money put options have night returns of only about —14 basis

points on average and short-maturity out-of-the-money puts have night returns of only about —85
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basis points. The bottom right average return does not correspond to the top left average return in
table above, since above I consider only out-of-the-money options. Table A.10 shows intraday S&P
500 put option returns by moneyness and time-to-expiry. Across portfolios, intraday put returns
are close to zero. This result suggests that option returns vary along the dimensions of moneyness
and time-to-expiry because of their different sensitivity to (overnight) market illiquidity, which
I explore in subsequent sections. Tables A.11 and A.12 show intraday and overnight call option
returns by moneyness and days-to-expiry. Corresponding to puts, intraday call risk premia are
insignificant across portfolios. Overnight call risk premia are significant only for in-the-money
options, due to their no-arbitrage relationship to out-of-the-money put options. Since European
puts and calls with the same contract specifications have to be priced consistently, to avoid no-

arbitrage violations, I compare out-of-the-money put options to out-of-the-money throughout the

paper.

IV. Dealers’ Position: Short Puts

This section shows that the dealer sector has a persistent short position in S&P 500 put options,
while the position in call options fluctuates around zero. To that end, I document dealers’ buy-
and sell trades in S&P 500 options and cumulate these trades into positions. In call options,
dealers’ buy- and sell volumes are remarkably balanced, while in put options, dealers’ sell volumes
consistently exceed buy volumes, leading to short positions. Equivalent to overnight put option
risk premia, dealers’ short put position is concentrated in deep out-of-the-money, short-maturity
puts. Dealers sell a particularly large volume of put options in times of low equity market volatility,

highlighting the importance of equity market risk for dealer inventory risk.

IV.A. Option Trades: Dealers Sell Puts

A major advantage of the S&P 500 index options market for the study of intermediary asset
pricing is the availability of comprehensive trade data. S&P 500 index options trade exclusively
on the Chicago Board Options Exchange (CBOE) and the CBOE makes datasets commercially

available that allow for the daily measurement of the options position of the dealer sector. Dealers’
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Table III: Dealers Sell Puts

Mean Std P10 P50 P90
Panel (a): Puts
Buys (No. m.) 29.1 12.7 15.9 26.3 46.8
Sells (No. m.) 30.3 12.6 16.6 28.0 47.3
Net Buys (Buys - Sells) -1.2 2.2 -3.8 -1.1 1.0
Panel (b): Calls
Buys (No. m.) 17.5 7.3 9.8 15.8 27.8
Sells (No. m.) 17.4 7.3 9.6 15.7 27.8
Net Buys (Buys - Sells) 0.1 1.0 -1.1 0.1 1.3

Note: This table displays summary statistics for dealers’ daily trade volume in S&P 500 options, separated by buy volume
and sell volume. Trade volume is in millions of contracts. Panel (a) contains puts, panel (b) contains calls. The sample
period is 2011 to 2023.

options position provide information on their risk exposures and risk management.

Data: Trade Volume by Trader Type. I obtain “Open-Close Volume files” from the CBOE.
These files split daily option volumes by contract (puts vs calls, expiry date and strike price), by
trader group (“market maker”, “broker-dealer”, “firm”, “customer” and “professional customer”),
and by volume type (volume bought vs volume sold). Throughout the paper, I refer to market
makers as dealers. I focus on the sample periods of 2011 to 2023. Prior to 2011, market makers
are not separately identified in the Open-Close Volume files, but have to be imputed as the
counterparty to firms and customers. Focusing on the post 2011 period has the added benefit
of increased option liquidity, which yields more reliable estimates of option risk premia at high
frequency. S&P 500 options have a contract multiplier of 100, i.e., one option is written on 100
units of the underlying asset. To aid interpretability, I adjust units such that one option is linked
to one unit of the underlying, i.e., I multiply all option volumes and positions by 100. I include all
available S&P 500 options into the analysis: The standard monthly SPX options and the weekly
SPXW options.

Table I shows dealers’ daily trade volume in S&P 500 options. Dealers buy an average of 29.1
million puts a day, while they sell about 30.3 million puts a day. Thus, the dealer sector experiences
net-buys of -1.2 million puts a day, where net-buys are calculated as NetBuys; = Buys: — Sells,
of option ¢ over day ¢. In contrast, the average dealer buy- and sell volume in call options is almost
identical at 17.5 million contracts a day, leading to dealer net-buys in call options of approximately

Zero.
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Who buys puts? The literature suggests that dealers negative net-buys in S&P 500 put options
stem largely from sophisticated investors’ hedging demands. Lemmon and Ni (2014) link equity
index option trading to this motive, while they argue that trading in equity options (options
on single stocks) is mostly driven by retail investors. Bollen and Whaley (2004) argue that
institutional investors hold long positions in index put options as portfolio insurance. Chen, Joslin,
and Ni (2019) interpret customers demand for put options as an indication for their aversion to
economic crash risk. Goyenko and Zhang (2019) find end-user buying pressure in S&P 500 put
options, but selling pressure in S&P 500 call options. In summary, various types of institutional
investors demand equity index put options and there is no natural counterparty that could supply

such options. As a result, intermediaries hold short put positions in their inventory.

IV.B. Option Positions: Dealers are Short Puts

I cumulate dealers’ daily net-buys of S&P 500 options into dealer positions, via

t
Net Position! = Z NetBuys, (2)
k=1

where k is a time index from the beginning of my sample to the end of the current day ¢. l.e.,
dealers’ NetPosition! in option i at the end of day ¢ is calculated as the cumulative sum over
all past daily dealer NetBuysi. Thus, NetPosition; is the number of contracts of option i that
dealers are long minus the number of contracts of option ¢ that dealers are short. Since options
are regularly listed and subsequently expire, this cumulation yields dealers’ option inventory after
a burn-in period. I choose a burn-in period of six months and thus arrive at my sample period of
2011.07 to 2023.08. Figure A.13 contains a numerical example regarding the estimation of dealers’
net-position.

Figure 3 shows the time series of dealers’ net-position in S&P 500 puts and calls. Dealers’
position in call options oscillates between +10m contracts and —10m contracts, without any
systematic pattern over most of the sample. Dealers’ zero net-position in calls can rationalize the
finding in the previous section that call returns are generally insignificant and do not vary between
night periods, where liquidity is low, and day periods, where liquidity is high.

Dealers’ position in puts is markedly different than their position in calls. In July 2011 dealers
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Figure 3: Dealers’ Net-Position: Short Puts
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Note: This figure shows that dealers have a persistently negative net-position in S&P 500 put options. Panel (a) shows
the daily time-series of dealers’ net-position in S&P 500 puts, panel (b) contains calls. Dealers’ net-position is the number
of contracts that dealers are long minus the number of contracts that dealers are short. Section IV describes the variable
construction. Net-positions are in million contracts.

have a short position in about 20 million puts. This short position gradually increases to around
50 million contracts in early 2018. Subsequently, dealers’ net-position oscillates at around —10
million contracts. Dealers’ short put position can rationalize the finding in the previous section that
put returns are generally negative and are significantly more negative overnight, where hedging
frictions are elevated. Dealers’ put position is negative on the vast majority of days, but experiences
a significant shift in early 2018. I address this shift in the “inventory risk management” paragraph

below.

Those put options where I find the most negative night returns are also the put options where
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Table IV: Dealers’ Short Put Position Resides Deep Out-of-the-Money at Short-Maturity

Days to Expiry

2-70 71- All
0.00 < |A| <€ 0.25 Deep Out of the Money -13.54 -3.32 -16.86
0.25 < |A| < 0.50 Out of the Money -0.47 -1.47 -1.94
0.50 < |A| < 0.75 In the Money 0.38 -0.07 0.32
0.75 < |A| < 1.00 Deep In the Money 0.47 0.17 0.63
All -13.15 -4.70 -17.85

Note: This table shows dealers’ net position in S&P 500 put options by moneyness and days to expiry. Dealer net position
is the number of contracts that dealers are long minus the number of contracts that dealers are short. Section IV describes
the variable construction. Numbers are in millions. The sample period is 2011 to 2023.

I find the most negative dealer positions. Table IV shows dealers’ position in S&P 500 put options
across option portfolios. Following the procedure for the option return tables in the previous
section, I sort options into portfolios by moneyness and days to expiry at market close and report
dealer positions across portfolios. Options’ are re-assigned at the next market close. Dealers short
position of on average about 20 million puts is concentrated in short-maturity, out-of-the-money
options, where I find a short positions of about 14 million contracts. It is remarkable that the
pattern in dealer positions across put portfolios corresponds to the pattern in overnight put option
returns across portfolios in table II, while there is no such pattern in intraday put option returns
in table A.10. This correspondence is consistent with an interpretation where option returns

compensate dealers for inventory risk from overnight market illiquidity.

IV.C. Dealers’ Inventory Risk Management: Equity Market Risk

Dealers sell more put options during times when equity market volatility is relatively low,
suggesting that (i) dealers actively manage their options inventory and (ii) that equity market
risk is a meaningful part of dealers inventory risk. The first example of this is the change in
dealers’ short put position around 2018 that is visible in figure 3. Figure A.5 shows the time series
of S&P 500 index volatility, measured as the annualized volatility of daily close-to-close returns
of the S&P 500 index over a rolling 365 day window. Realized S&P 500 volatility is unusually
low leading into 2018 and is persistently higher afterwards.” Thus, dealers’ carry a smaller short

put position in their inventory after 2018, but each option exposes them to more risk, due to the

9February 5% 2018 marks the event that traders refer to as “Volmageddon”. Augustin, Cheng, and Van den Bergen
(2021) describe the event.
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Figure 4: Dealers’ Sell More Puts when Equity Returns are Less Volatile
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Note: This figure plots dealers’ average net-buys for different groups of lagged S&P 500 index return volatility. Net-Buys
are the daily number of S&P 500 put options bought minus the number of S&P 500 put options sold. Volatility is measured
for a rolling window of 10 daily close-to-close returns and is lagged by one day.
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higher return volatility of the underlying. Gruenthaler (2022) finds that option dealers manage
their net-vega exposure in anticipation of spikes in implied volatility. In contrast, I find that
equity market risk is the central component of dealers’ inventory risk. The importance of equity
market risk for dealers’ inventory risk is consistent with the interpretation that option risk premia
materialize overnight because obstacles to delta-hedging expose dealers to equity market risk.
Dealers’ inventory risk management in the face of equity market risk is clearly visible in dealers’
trade volumes. Figure 4 shows a binscatter plot for dealers’ daily net-buys for 20 bins of lagged
realized volatility of the underlying S&P 500 index. Dealers sell more puts when equity market
risk is relatively low. For example, when lagged S&P 500 return volatility is around 5, then
dealers sell an average of 3.4 million put options a day. In contrast, when lagged S&P 500 return
volatility is around 17, then dealers sell an average of only 1 million put options a day. The
relationship between equity market risk and dealer net-buys is almost monotonous, though the
figure suggests a relationship that is logarithmic rather than linear. Of course, this figure does not
show whether trades in puts are driven from dealers and customers. It is possible that customers
demand more put options when equity markets are calm. However, this seems less intuitive from
a risk perspective than the other side of the argument, that dealers are more willing to sell puts

when equity markets are calm.
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V. Dealers’ Exposure to Overnight Equity Price Gaps

This section shows that option risk premia are increasing in dealers’ inventory exposure to gap
risk, and this relationship is restricted to night periods. To that end, I estimate dealers’ inventory
exposure to overnight equity price gaps and regress day- and night option risk premia onto dealers’
gap risk exposure. I find that dealers are substantially exposed to negative overnight equity
price gaps due to the combination of short put positions and low overnight equity liquidity. The
resulting inventory risk predicts option risk premia overnight, but not intraday. Dealers’ equity
gap risk exposure spikes into the 3" Friday option expiry, rationalizing why option risk premia

are concentrated around that period.

V.A. Estimating Dealers’ Exposure to Gap Risk

I exploit dealers’ option positions to estimate their exposure to different market scenarios.
Specifically, I estimate the Profit and Loss (PnL) of dealers’ option positions, as
I

PnLii =Y NetPosition! x |Pi, —F — Al x (SPX,;; — SPX,) (3)

i=1

where fﬁtﬂ is the estimated PnL over period t + 1, NetPosition; is dealers’ net-position in
option 7 at the end of day t as described in section IV, Igtﬂrl is the estimated market price of
option i, Al is the delta of option 4, and SPX ++1 18 the estimated value of the S&P 500. Thus,
I estimate the PnL that the dealer sector will incur under different scenarios for P and SPX.
This estimation approach is very flexible as it can accommodate any dynamics for P and SPX.
However, the estimation requires some assumptions. Estimating future option prices as a function
of the price of the underlying requires an option pricing model. In the spirit of simplicity, I choose
the Black-Scholes-Merton model. The choice of pricing model is immaterial for the results in this
paper, as long as the value of the option is a convex function of the value of the underlying, such
that changes in the price of the underlying change the options’ delta. To estimate the PnL, I
assume that dealers are initially fully delta-hedged, but subsequently do not adjust their option

positions or hedges. This is a reasonable approximation over nights where market liquidity is low.
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Further, I assume that dealers have the same dollar position in every options contract, yielding an
equal-weighted PnL estimate. Via this assumption I abstract from dealers’ margin requirements
(e.g., section A.2 and Hitzemann, Hofmann, Uhrig-Homburg, and Wagner (2021)).

I estimate dealers’ exposure to equity market risk and stochastic volatility risk. To estimate
?n\LtH in equation 3 from e.g., a —10% return in the underlying S&P 500 index, I estimate f)tl 11
as the Black-Scholes-Merton price of option i at the end of period ¢ + 1, assuming that o? = ol
and SPX 11 = SPX; x 0.9, where o describes options’ implied volatility relative to the Black-
Scholes-Merton model. To estimate fn\LtH in equation 3 from e.g., a 200% increase in options’
implied volatilities, I estimate ]3; '+ as the Black-Scholes-Merton price of option 7 at the end of
period ¢+1, assuming that o}, = o} x 2 and @tﬂ = SPX,. Le., I change one market variable,

while holding the other constant. In practice, equity market returns and volatilities are negatively

correlated.

V.B. Dealers’ Exposure to Gap Risk

Figure 5 illustrates dealers’ exposure to equity price gap risk. The figure shows the estimated
profits from dealers’ option portfolio for different hypothetical returns of the underlying S&P
500, assuming initial delta-hedges that are subsequently not adjusted. The figure shows that for
example a —10% return in the S&P 500 index would lead to a loss of about $700m. Section IV
shows that dealers have an average net short position in about 20 million options. That is, in
case of a —10% index return, dealers loose about $35 for every $1 option position. Losses can
exceed 100% for two reasons. For one, I assume positions in the underlying asset for the purposes
of delta-hedging, which add to the numerator in the return calculation but do not add to the
denominator, since futures can be traded with very few margin requirements. More importantly,
the losses accrue from price increases on short positions. The estimated PnL for a 0% return in
the S&P 500 is comparably small at $2.5m and stems from the time-decay of the option value.

Figure A.16 shows that a 200% increase in options’ implied volatilities would lead to a loss
of about $400m. Options’ prices increase with their implied volatilities and whoever holds short
options positions incurs losses. Such spikes in expected volatility tend to occur in times of economic
crises, like the Great Financial Crisis of 2008 or the Covid Crash of 2020, but typically revert

quickly to normal levels. Dealers’ exposure to stochastic volatility risk is unlikely to explain
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Figure 5: Dealers are Exposed to Overnight Equity Gap Risk
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put option risk premia, since I show that risk premia are insignificant intraday. Extremely high
intraday equity trade volumes can rationalize why dealers face little equity market risk intraday,
while it is highly unlikely that, in case of an implied volatility spike, dealers can quickly buy back
their options from customers intraday, such that they avoid those losses.

Dealers might not require large compensation for stochastic volatility risk, since volatility spikes
are highly mean reverting. Dealers might experience a negative PnL from increases in options’
implied volatilities, but can expect those losses to reverse over the following days or weeks as
long as they avoid a forced liquidation of their portfolio. An alternative potential explanation for
the absence of stochastic volatility risk premia in (intraday) option returns is that dealers’ hold
offsetting positions in other equity options or structured products that insulate them from such
shocks. Both interpretation are consistent with Dew-Becker, Giglio, Le, and Rodriguez (2017),
who find that changes in expected volatility can be hedged costlessly.

Dealers’ equity price gap risk is concentrated in deep out-of-the-money short-maturity put

options. I estimate dealers’ gap risk exposure as

Dealers' Gap Risk, = PnLyi1 | SPXis1 = SPX, x 0.94 (4)
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Table V: Dealers’ Gap Risk from Puts Resides Deep Out-of-the-Money at Short-Maturity

Days to Expiry

2-70 71- All
0.00 < |A| <0.25 Deep Out of the Money -178.9 -1.2 -180.2
0.25 < |A] < 0.50 Out of the Money 0.6 -0.1 0.5
0.50 < |A] < 0.75 In the Money 0.8 0.0 0.8
0.75 < |A| < 1.00 Deep In the Money 0.1 -0.0 0.1
All -177.4 -1.4 -178.8

Note: The table shows the estimated dealer Profit-and-Loss from a -6% return in the underlying S&P 500 index by portfolio
of put options. Section V describes the variable construction. Numbers are in million dollars. The sample period is 2011 -
2023.

, 1.e., as the estimated profits on dealers’ option portfolio given a 6% decline in the value of the
underlying. Table V separates dealers’ gap risk exposure into put option portfolios. I estimate
that a —6% S&P 500 return leads to dealer losses from put options of —$178.8m. —$178.9m of
the losses can be attributed to short-maturity, deep out-of-the-money puts. Table A.14 shows
the corresponding numbers for call options, and does not reveal any large risk exposures. The
concentration of risk has two causes: One, dealers short positions are heavily concentrated in these
options and two, short-maturity out-of-the-money options’ returns are most sensitive to underlying
returns (see figure A.11).

My approach to estimating dealers’ exposure to equity market risk is new to the literature.
Since the work of Garleanu, Pedersen, and Poteshman (2009), the literature has focused on dealers’
net-gamma and net-vega as measures of jump- and volatility-risk respectively. Net-gamma is the
sum-product of dealers’ net positions across options contracts and those options’ gamma. Gamma
is a “Greek” option risk-measure that approximates the change in delta from changes in the price
of the underlying. Thus, dealers’ net-gamma approximates the degree to which dealers’ need to
adjust their delta-hedges due to small underlying price changes. In contrast, my estimation can
accommodate underlying price changes of any size and yield estimated portfolio losses as well as

estimated delta changes.

V.C. Dealers’ Gap Risk and Expected Option Returns

I explore the effects of dealers’ equity market risk exposure on option returns by estimating
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Table VI: Option Returns on Dealers” Gap Risk: Significant Overnight

(1) (2) (3) (4) Puts (5) Calls

Dealers’ Gap Risk -32.3%** -32.2%** -4.0 -3.5 -35.5
(-4.80) (-4.79) (-0.47) (-0.31) (-1.44)

Night -85.0%** -84.6*** -153.3** -12.1
(-3.28) (-3.27) (-7.71) (-0.29)

Dealers’” Gap Risk x Night -56.5%** -67.0%* -7.4
(-4.19) (-3.73) (-0.19)

Constant -23.2% 18.6 18.5 17.3 19.7
(-1.79) (0.98) (0.97) (1.11) (0.74)
Observations 43,256 43,256 43,256 22,084 21,172
R2-adjusted 0.00 0.00 0.00 0.01 0.00

Note: This table shows that dealers’ equity market gap risk predicts option risk premia, but only over night periods. The
table presents regression estimates of Equation 5. I regress portfolio-level option returns on the portfolio-level measure of
dealer gap risk presented in Section V and a dummy for night-periods. Option returns are overnight and intraday for the four
out-of-the-money put- and call option portfolios from tables IT and A.12. Returns are in basis points and are delta-hedged
at the beginning of the respective period. Column (4) contains only the four put portfolios, column (5) contains only the
four call portfolios. Gap risk is standardized to zero mean and unit variance. Standard errors are clustered within each day.
The sample period is 2011 to 2023.

the following regression specification:
R! = B1GapRisk!_| + Ba x Night, + BsGapRisk!_, x Night, + ¢! (5)

where R;; is the return of option portfolio i over period ¢, and GapRisk;_; contains the negative
of the estimated dealer PnL from a —6% S&P 500 return in portfolio 7 at the end of period t —1. 1
measure GapRisk as the negative of the estimated dealer PnL from a —6% S&P 500 index return,
such that higher values indicate more risk. Option returns are overnight and intraday for the four
out-of-the-money put- and call option portfolios from tables IT and A.12. l.e., returns and risks
are measured at the option portfolio level with portfolio, in order to obtain a continuous panel
of return observations across moneyness and time-to-expiry, despite the strict liquidity subsets.
Standard errors are clustered at the day level. Returns are in basis points, dealer gap risk is
standardized to zero mean and unit variance.

Table VI provides regression estimates of Equation 5. Column (1) shows that dealers’ gap risk
across option portfolios has significant predictive power for option risk premia. A one standard
deviation increase in dealers’ gap risk exposure predicts a decrease in option returns of 32 basis

points. Table A.15 shows summary statistics for dealers’ aggregate gap risk exposure. A one stan-
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Table VII: Overnight Put Option Risk Premia Increase in Volatile Periods

(1) (2) (3) Puts (4) Calls

Dealers’ Gap Risk -61.5%** -39.5%* -46.2%* -36.1
(-5.82) (-3.23) (-2.81) (-1.01)

Volatility -58.4* -58.4* -106.2*** -15.9
(-1.67) (-1.67) (-4.43) (-0.27)

Dealers’ Gap Risk x Volatility -61.5** -74.2%* -19.2
(-2.48) (-2.34) (-0.34)

Constant -36.8 -37.8 -84.3** 14.8
(-1.58) (-1.63) (-5.08) (0.40)
Observations 21,249 21,249 10,945 10,304
R2-adjusted 0.00 0.00 0.01 0.00

Note: This table regresses overnight option risk premia on lagged dealer gap risk exposure and a dummy for periods of high
equity volatility. The volatility dummy indicates periods where the lagged 10-day return volatility of the S&P 500 is above
its sample median. Option returns are overnight and intraday for the four out-of-the-money put- and call option portfolios
from tables IT and A.12. Dealers’ gap risk exposure is at the option portfolio level as described in section V. Returns are in
basis points and are delta-hedged at the beginning of the respective period. Gap risk is standardized to zero mean and unit
variance. Column (3) contains only the four put portfolios, column (4) contains only the four call portfolios. The sample
period is 2011 to 2023.

dard deviation increase in dealers’ gap risk exposure corresponds to $430m increase in projected
losses. Column (2) adds a dummy for night periods and confirms the finding that option returns
are significantly more negative overnight, by 85 basis points. Column (3) interacts dealers’ gap
risk with the night dummy and shows that the predictive power of dealer risk for option returns is
specific to night periods. A one standard deviation increase in dealers’ gap risk predicts a decrease
of 4 basis points for intraday returns, but a decrease of 57 basis points for night returns. Standard
errors are clustered at the daily level, since my measure of dealers’ gap risk does not vary between
day- and night periods. In unreported results, I find that double-clustering standard errors by day
and Portfolio x Month does not affect the significance of the results. Column (4) sub-sets the
sample to put option portfolios, leading to more negative night returns and overnight predictabil-
ity that is approximately unchanged. Column (5) sub-sets the sample to call option portfolios.
Consistent with the previous results of insignificant call option risk premia and insignificant dealer
inventories of calls, the estimation reveals no overnight risk premia and no predictability via dealer
inventories.

Testing another prediction of intermediary option pricing theory, I compare periods of high-

and low equity market volatility. Table VII regresses overnight option risk premia on lagged
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Figure 6: Dealers’ Gap Risk: Spiking into 3" Friday Option Expiry
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Note: This figure shows that dealers’ gap risk spikes into the 3¢ Friday option expiry. The figure plots dealers’ equity
market gap risk as estimated in section V relative to each months’ 3" Friday, where the standard SPX options regularly
expire. Day 0 marks the 3" Friday, where risk is low since I consider positions at market close, when SPX options have
already expired. The sample period is 2011 to 2023.

dealer gap risk exposure and a dummy for periods of high equity volatility. The volatility dummy
indicates periods where the lagged 10-day return volatility of the S&P 500 is above its sample
median. Option returns are overnight and intraday for the four out-of-the-money put- and call
option portfolios. Dealers’ gap risk exposure is at the option portfolio level as described above.
Gap risk is standardized to zero mean and unit variance.

Column (1) shows that dealers’ gap risk has significant predictive power for overnight option
risk premia, but option risk premia are not generally elevated in periods of high equity return
volatility. However, Column (2) shows that dealers’ gap risk has significantly more predictive
power for overnight option risk premia in periods of high equity return volatility. Column (3) sub-
sets the regression sample to the four out-of-the-money put portfolios and shows both elevated
risk premia and elevated return predictability in high volatility periods. Column (4) constitutes
a placebo-test. I subset to the four out-of-the-money call option portfolios and I find neither

elevated risk premia nor elevated predictability, consistent with the hypothesis that dealers’ gap

risk originates from put options.

V.D. Risk and Returns Spike Into the 3"¢ Friday Option Expiry

Dealers’ equity price gap risk and options’ average night returns both become particularly
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pronounced over the days before the monthly expiry of the standard SPX options on 3"¢ Friday.
Figure 6 shows dealers’ equity market gap risk relative to each months’ 3"¢ Friday, where the
standard SPX options expire. Dealers’ risk exposure increases almost monotonically until the day
before option expiry. Day 0 marks the 3"¢ Friday option expiry, where risk is low since I consider
positions at market close, when SPX options have already expired. The spike in gap risk stems
from the increased riskiness of short-maturity options that I outline above. Figure A.12 shows
put returns around 3" Fridays and displays the same pattern for returns: Overnight put returns
are especially pronounced immediately over the days leading up to the monthly 3"¢ Friday option
expiry date. Thus, the examination of 3" Fridays yields another dimension where dealers’ risk

exposure and option risk premia line up.

VI. Dealers’ Liquidity Demand Exceeds Overnight Equity Volumes

This section shows that overnight equity trade volume is low relative to dealers’ liquidity demand
for delta-hedge adjustments. I describe the evolution of overnight equity trading in the US, and
show 24h volume profiles for selected stocks and futures. I estimate that dealers’ liquidity demand
amounts to around $8bn in case of a —5% return in the S&P 500, while the average overnight
volume of S&P 500 futures contracts amounts to only about $0.5bn an hour for most parts of the

night.

VI.A. Overnight Equity Trading

There are three dominant approaches to trade equities and adjust delta-hedges: Equities, equity
ETFs and equity futures. Regarding equities, the current regular trading hours for all major U.S.
exchanges are 09:30 to 16:00 (E.T.). These trading hours have been in place since 1985, when the
NYSE moved the open time from 10:00. ETFs trade on the same exchanges as the underlying
stocks and the trading hours are equivalent. Before the 1990s trading stocks outside of regular
exchange trading hours would have required an over-the-counter transaction with a market maker
over the telephone. In 1991 the Instinet trading system allowed institutional investors to trade
stocks between 06:30 and 09:20. In 1998 the Nasdaq stock exchange introduced pre-market stock
trading from 08:00 to 09:30, following a regulatory decision by the SEC. In the early 2000s, the
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Figure 7: Equity Trade Volume is Small for Most Parts of the Night
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Note: This figure shows average trade volumes for each 30-minute interval of the day. Panel (a) contains the most liquid
S&P 500 E-mini futures contract, panel (b) contains Apple Inc. stocks. The sample period is 2011 to 2023.

NYSE, CME, and others introduced pre-market sessions of their own.
In 1998, regulation ATS (Alternative Trading Systems) distinguished ATS from registered ex-
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changes, and increased reporting requirements, thus prompting ECNs (Electronic Communications
Networks) to merge and register as exchanges. In 2001, Archipelago Electronic Communications
Network and the Pacific Exchange merged to create ArcaEx, the first totally electronic stock
exchange. In 2005, NYSE Hybrid Market was launched, creating a blend of floor-based auction
and electronic trading. In 2006, New York Stock Exchange became a public company and shortly
thereafter acquired Archipelago ECN. In connection with this, the NYSE eliminated the open
outcry system on the floor. In 2005, in order to regain the competitive advantage lost to the
rise of ECNs, Nasdaq held an initial public offering and purchased Instinet shortly thereafter. In
2005.04 Nasdaq trading hours were extended from 08:00 to 18:30 to 04:00 to 18:30. In 2006.09
Nasdaq extended trading hours further to 04:00 to 20:00, thus establishing the extended stock
trading hours that are valid throughout my sample.

To illustrate stock trading hours, figure 7 panel (b) shows the average trade volume of Apple
Inc. stocks for every 30-minute window of the trade day over my sample period of 2011 to 2023. The
most obvious take-away is that there is no equity trading between 20:00 and 04:00 the subsequent
morning. Trade volumes are barely perceptible from 04:00 to 07:30, and slightly elevated from
07:30 to 09:30. Trave volumes increase by orders of magnitude when stock markets open for regular
trading at 09:30, with trade volumes following a U-shape from open to close. After-hours trading
tends to be more liquid than pre-market trading, but volumes are still relatively small. There is
no trading over the weekend, as stock trading ends on Friday’s at 20:00 and resumes on Monday’s
at 04:00.

Figure A.7 displays the daily trade volume of the S&P 500 constituents stocks. Daily trade
volumes were relatively low during the late 90s at around $20bn a day. Volumes increased around
2007 to more than $100bn a day, and have reached about $200bn a day after the 2020 Covid crisis.
According to industry reports, as of Q1 2021 about 0.27% of the trade volume in S&P 500 stocks
occurs during pre-market hours and about 0.12% occurs during post market hours.

Regarding S&P 500 futures trading hours, in 1995 S&P 500 futures began trading on the CME
Globex electronic exchange. Trading hours followed the major U.S. equity trading hours: 09:30 to
16:00. In 1997, S&P 500 E-Mini futures began trading on the CME Globex platform, with trading
hours from Sundays at 18:00 to Fridays at 17:00 and a daily maintenance period from 17:00 to
18:00.

S&P 500 futures volumes are low for most parts of the night, relative to dealers’ liquidity
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Figure 8: Dealers’ Liquidity Demand
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Note: This figure shows dealers’ liquidity demand for the adjustment of delta-hedges in case of an equity market crash.
Dealers’ liquidity demand is estimated for different hypothetical returns of the underlying S&P 500 index via equation 6.
The sample period is 2011 to 2023.

demand. Figure 7 panel (a) shows the dollar trading volume in S&P 500 E-Mini futures for each
30 minute interval of the day. Futures trade volumes are from Boyarchenko, Larsen, and Whelan
(2023), who sample the most liquid futures contract every day. Volumes over regular trading hours
are high, between $8bn and $15bn every 30 minutes. In contrast, overnight futures volumes are
low, especially between 20:00 and 04:00, when the underlying equities do no trade, and futures
trade volumes average about $250m every 30 minutes. I conclude that overnight trading volumes
for U.S. equities are small relative to the delta-hedging needs of option dealers in case of a large
market crash. As a result, option dealers are exposed to overnight equity market risk. The results

in previous sections suggest that option risk premia compensate dealers for this risk exposure.

VI.B. Dealers’ Liquidity Demand

How much would dealers need to trade in the underlying S&P 500 index to remain delta-hedged
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during an equity market crash? To answer this question, I estimate dealers’ liquidity demand as

I
Liq@andt+1 = Z NetPosition! x [ﬁiﬂ — Ai} x SPX; (6)

i=1
where Liq@andt 41 is the estimated dollar trading volume that would keep dealers’ option
positions delta-hedged, NetPosition! is dealers’ net position in option i at the end of day ¢
as estimated in section IV, A; 41 1s the estimated delta of option ¢ and SPX; is the value of
the S&P 500 index. A! is options’ Black-Scholes-Merton delta, with o? set equal to the options’
Black-Scholes-Merton implied volatility. ﬁi 41 is estimated as options’ Black-Scholes-Merton delta,
where 0}, = o] and SPX;1 = SPX; x p and p takes values of [0.85, 0.9, ..., 1.15] to simulate
S&P 500 returns of [—15%, —10%, ..., 15%).

Dealers’ liquidity demand for the adjustment of delta-hedges amounts to billions of dollars.
Figure 8 shows the estimated dealer liquidity demand from equation 6 for different hypothetical
returns of the underlying S&P 500 index. The figure shows that, given dealers’ option positions,
if the underlying index experiences a —10% return, dealers’ would need to sell about $20bn worth
of equities to remain delta hedged. This liquidity demand far exceeds typical trade volumes in
equities and futures between 20:00 and 04:00. As a result, dealers face large constraints on their
hedge adjustments over night periods, exposing them to significant inventory risk.

The estimation of dealers’ liquidity demand likely provides a lower bound. Investor demand for
puts likely leads to dealer short positions in options beyond S&P 500 options, which are the focus
of this study. In addition, options’ delta increases in the expected volatility of the underlying and

expected volatility usually spikes in times of large negative equity market returns.

VII. The Effect of Equity Liquidity on the Option Risk Premium

This section exploits the increase in overnight equity trading around 2006, to study the impact of
equity liquidity on option risk premia. I show that substantial overnight equity trading emerged
only around 2006, when Nasdaq and Nyse acquired major electronic communication networks,
which presents an opportunity for a difference-in-differences estimation: Intra-week option risk
premia are substantially reduced relative to weekend risk premia after the emergence of overnight

equity trading.
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VII.A. The Growth of Overnight Equity Trade Volumes

Equity trade volume was not always meaningfully higher over week-nights relative to weekends.
S&P 500 E-mini futures were introduced in 1996, with trading hours close to 24 hours a day from
Sunday evening to Friday evening. Yet, overnight volumes remained low until the mid 2000s.
Figure 9 illustrates the emergence of overnight equity trading. Panel (a) shows the monthly average
of the overnight dollar trading volume of the most liquid S&P 500 E-mini futures contract. Panel
(b) shows the monthly average of the overnight dollar trading volume of the S&P 500 SPY ETF.
Both volume series take off only around 2006. While the ETF volume is low relative to the futures
volume, it is still a relevant series to examine, since the emergence of overnight ETF trading
signals the emergence of overnight stock trading, with significant volume at least in large-cap
stocks. Above, I describe the evolution of overnight U.S. equity trading and link the emergence of
significant volumes around 2006 to the acquisition of the major electronic communication networks
by the major U.S. equity exchanges (Nasdaq and Nyse).

The sharp increase in overnight equity trade volume relative to over-weekend trade volume
offers a rare opportunity to study the effects of market liquidity on asset risk premia. If equity
liquidity affects option risk premia, then week-night option risk premia should decline relative to
weekend option risk premia around the emergence of week-night equities trading. Unfortunately,
high-frequency options data for the late 90s and early 2000s are either unavailable or illiquid.
Thus, I take a different approach, that uses widely available options data and circumvents the

issue of potentially biased intraday option returns over the low-liquidity sample.

VII.B. The Change in Option Risk Premia

In order to study option risk premia around the emergence of overnight equity trading, I
compare intra-week option returns to weekend option returns. Weekend returns are measured from
Friday 16:15 to Monday 16:15, intra-week returns comprise of all other daily close-to-close returns.
Returns are delta-hedged at the beginning of the respective period. Intra-week returns constitute
the treatment group, since they include the weeknight periods where equity trading emerged, and
weekend returns constitute the control group, since they include fewer such periods. Weekend
returns do include the period of Sunday evening to Monday morning where equity trading grew

substantially too. My identification relies on intra-week returns being treated more than weekend
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Figure 9: S&P 500 Night Trade Volume Became Meaningful Around 2006
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Note: Panel (a) shows the monthly average of the overnight trade volume in the most liquid S&P 500 E-mini futures
contract. Panel (b) shows the monthly average of the overnight trade volume in the S&P 500 SPY ETF. Overnight trade
volume is measured between 16:00 and 09:30 and displayed in billion dollars.

returns, since the former include substantially more periods where equity trading emerged.

I estimate the following regression specification:
R: = By IntraWeek, + By Post, + (3 IntraWeek, x Post, + €. (7)

where R! is the average option return over day ¢, IntraWeek; is a dummy for close-to-close
returns that are not Friday to Monday, Post; is a dummy for the period after treatment. Since
the emergence of overnight equity trading cannot be attributed to any specific year, I provide
regression estimates with post dummies between 2004 and 2010.

Data: Option Returns Intra-Week and Weekend. I obtain daily option data from Option-
Metrics, which is the standard dataset for option pricing research. OptionMetrics aggregates
option trades at the daily frequency, such that all available observations are at 16:15. I obtain
option’s bid quote, ask quote, and delta. While OptionMetrics applies a proprietary method for
calculating options’ deltas, their deltas are typically close to Black-Scholes deltas where sigma is
set equal to the options implied volatility. To alleviate concerns of liquidity and data errors, I
apply several filters to the data. I exclude options with a zero trade volume on any of the previous
three days. I discard options with negative lagged bid-ask spreads, lagged bids of 0, lagged mid
quotes below $0.05 or lagged spreads above $10. I discard large hedged or un-hedged reversal

returns (returns above 1000% immediately followed by —90% or vice versa). Finally, I discard
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Table VIII: Intra-Week Option Returns are Reduced after the Growth of Overnight Equity Trading

(’03) (’04) (’05) (’06) (’07) (’08) (’09)
IntraWeek 101.2 45.4 78.2 127.2 166.5* 268.6™*  292.8***

(0.84) (0.41) (0.77) (1.37) (1.92) (3.09) (3.30)
Post -411.4%*  -448.2***  -400.9"**  -349.5"** -324.6™"*  -257.7**  -287.6*"

(-3.04)  (-345)  (-3.18)  (-2.83)  (-2.64)  (-2.07)  (-2.25)

IntraWeck x Post  468.9**  571.6**  553.2°*  507.0°*  47L.7°*  321.6*  208.5*
(3.18)  (4.04)  (4.03)  (3.76)  (3.51)  (2.35)  (2.13)

Constant 2266.9%  -256.0"*  -303.9%** _350.7°** _377.0%* _427.6"* _421.3"*
(-2.42)  (-252)  (-3.27)  (-4.12)  (-4.77)  (-5.73)  (-5.45)

Observations 6,958 6,958 6,958 6,958 6,958 6,958 6,958

R2-adjusted 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Note: This table shows that, relative to weekend risk premia, intra-week risk premia are reduced after the emergence of
overnight equity trading. The table presents regression estimates of Equation 7, where option returns are regressed on a
dummy for intra-week returns, a dummy for the period post emergence of overnight equity trading, and an interaction
of the two. Option returns are for the portfolio of deep out-of-the-money, short-maturity S&P 500 put options. Weekend
returns are measured from Friday 16:15 to Monday 16:15, intra-week returns comprise of all other daily close-to-close returns.
Column ’03 (’04, etc.) set the treatment dummy in 2003.01 (2004.01, etc.). Returns are in basis points and are delta-hedged
at the beginning of the respective period. The sample period is 1996 to 2023.

observations that violate no-arbitrage bounds.

Intra-week option risk premia are reduced relative to weekend option risk premia around the
introduction of week-night equity trading. Table VIII shows regression estimates of equation 7,
where the left-hand-side option return is the average return for out-of-the-money, short-maturity
S&P 500 put options. Column (1) shows that the average weekend return before 2003 was —267
basis points and intra-week returns were higher by 101 bps, tough not significantly different.
After 2003 the average weekend put return is reduced by —411 bps, while average intra-week put
returns show a relative increase of 469 bps. The crucial coefficient for the diff-in-diff setup is the
interaction of treatment group dummy “IntraWeek” with treatment dummy “Post”, which shows
relatively reduced (i.e. less negative) option risk premia over periods where equity trade volume
increased. For robustness, the subsequent columns repeat the estimation for Post dummies in
2004.01 to 2009.01. Across columns, intra-week option risk premia are significantly reduced relative
to weekend risk premia after the treatment.

These results suggest an impact of equity liquidity on option risk premia, likely through dealers’

inventory risk. As I argue in this paper, dealers’ inventory risk is related to equity liquidity, since

low equity trade volumes impede dealers’ ability to continuously adjust their inventory delta-
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hedges. Hu, Kirilova, and Muravyev (2023) study Korean data and find that few option dealers
engage in delta-hedging. In contrast, my results suggest that delta-hedging is an important part
of option dealers risk-management in U.S. markets.

The increase in weekend risk-premia over the Post period that is visible in the second row of
the table is possibly caused by the 2008 Global Financial crisis that occurred immediately after
the emergence of weeknight equity trading. Risk-premia across asset classes were substantially
suppressed ahead of the 2008 GFC and the increase in weekend option risk premia after 2008
possibly reflects increased investor attention to risk.

Figure 2 illustrates the change in intra-week option risk premia around the emergence of
week-night equity trading. The figure plots the cumulative log returns of out-of-the-money short-
maturity S&P 500 puts over intra-week and weekend periods. Returns are scaled to the same
10% annualized volatility. Cumulative scaled log returns of out-of-the-money puts are remarkably
similar before the emergence of week-night equity trading around 2006, which is indicated with the
vertical line. Afterwards a large and persistent gap emerges between the two cumulative return

series.

VIII. Conclusion

This paper suggests that S&P 500 option risk premia largely result from the combination of options
demand and overnight equity illiquidity, which expose risk-averse intermediaries to unhedgeable
inventory risk. I show that S&P 500 option risk premia are on average insignificant intraday, but
significantly negative overnight, outside of regular exchange trading hours. Dealers’ inventory ex-
posure to overnight equity price gaps can explain this finding. Dealers have a net-short position in
put options, which exposes them to overnight equity “gap risk”, the risk that equity prices change
overnight, since overnight equity liquidity is too low for continuous delta-hedging. In contrast,
intraday equity liquidity presents few such obstacles. Supporting this channel, the emergence
of overnight equity trading around 2006 leads to a relative reduction in option risk premia over
parts of the week that include more overnight trading sessions, suggesting a causal effect of equity
liquidity on option risk premia, likely through dealers’ inventory risk.

My results have three implications. (i) Option risk premia vary with the liquidity of the un-

derlying asset. Not all options should be expected to have insignificant intraday risk premia, since
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most underlying assets are not as liquid intraday as the S&P 500. Similarly, significant intraday
S&P 500 option risk premia might still arise in times of reduced liquidity or exceptional (jump)
risk. (i) Security market design has a large impact on option risk premia and regulators who
want to lower hedging costs for option market customers should consider the potentially beneficial
impact of around-the-clock market liquidity. (i7i) My results suggest that investor demand for
options translates into option risk premia only insofar as it exposes dealers to unhedgeable risk.
As a result, option risk premia likely reflect a combination of the investor pricing kernel and the

intermediary pricing kernel.
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APPENDIX

Section A.1 provides a summary of data sources and variable construction, section A.2 contains
further details on the S&P 500 options market, section A.3 contains further details on the S&P 500
equity market and section A.4 contains further details regarding option pricing theory. Sections
A.5 and A.6 contain supplementary tables and figures.

A.1. Data Summary

The main paper introduces data wherever they are first used and does not contain a separate data
section. Instead, I provide a summary of data sources and variable construction here.

S&P 500 Futures. I obtain data on S&P 500 E-Mini Futures from Boyarchenko, Larsen, and
Whelan (2023), who follow standard practices in sampling the most liquid daily contract.

S&P 500 Options: High-Frequency. I obtain options data from the Chicago Board Options
Exchange (CBOE). The dataset aggregates options trades at the 15 minute frequency such that
the first available observation is at 09:45 (E.T.), 15 minutes after the regular options market open,
and the last available observation is at 16:15, at the regular options market close. For each of
these intervals the dataset provides option’s bid quote, ask quote, and first-, last-, high- and low-
trade price. Further, the dataset provides option’s volume, open interest and pre-calculated risk
measures like Delta, Gamma and Vega.

To alleviate concerns of liquidity and data errors I apply several filters to the data. I exclude
options with either a zero trade volume on any of the previous three days or a zero trade volume at
the start of the respective return period. Le. to be included in the night (day) portfolio an option
needs to be traded for three consecutive days and be traded between 16:00 and 16:15 (09:30 and
09:45)) prior to the return period. I discard options with negative lagged bid-ask spreads or zero
lagged bids or lagged mid quotes below $0.05. T discard large hedged or unhedged reversal returns
(returns above 1000% immediately followed by —90% or vice versa). Finally, I discard observations
that violate no-arbitrage bounds. These steps are similar to those in Jones and Shemesh (2018)
and Muravyev and Ni (2020).

I measure night returns from 16:15 to 09:45 (E.T.) and day returns from 09:45 to 16:15. The
SPX options market opens for regular trading on the CBOE at 09:30 and closes at 16:15 (E.T).
I measure open prices at 09:45 since my dataset groups options data into 15 minute intervals.
Throughout the paper I use mid-quotes to measure prices. I delta-hedge option returns with S&P
500 E-Mini futures at the start of the respective period, i.e. the delta-hedge for e.g. night returns
is set up at 16:15 and subsequently not adjusted. Throughout the paper, I estimate options’ delta
via the Black-Scholes-Merton pricing formula with sigma equaling the options’ implied volatility.

S&P 500 Options: Daily. I obtain daily option data from OptionMetrics, which is the standard
dataset for option pricing research. OptionMetrics aggregates option trades at the daily frequency,
such that all available observations are at 16:15. I obtain option’s bid quote, ask quote, and delta.
While OptionMetrics applies a proprietary method for calculating options’ deltas, their deltas are
typically close to Black-Scholes deltas where sigma is set equal to the options implied volatility. To
alleviate concerns of liquidity and data errors, I apply several filters to the data. I exclude options
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with a zero trade volume on any of the previous three days. I discard options with negative lagged
bid-ask spreads, lagged bids of 0, lagged mid quotes below $0.05 or lagged spreads above $10. 1
discard large hedged or unhedged reversal returns (returns above 1000% immediately followed by
—90% or vice versa). Finally, I discard observations that violate no-arbitrage bounds.

Delta-Hedged Option Returns (Option Risk Premia). I calculate delta-hedged option re-
turns as
Pi—P , — Al | x (SPX;— SPX; )

i — . Al
Rt Ptz_l ( )

where R! is the return of option i over period t, P; is the price of option i at the end of period
t, SPX is the price of the S&P 500 index and Al ; is the lagged delta of option 7. Thus, the
numerator consists of the dollar change in the option price minus the dollar change that can be
explained by S&P 500 returns. The numerator consists of the lagged option price only. Thus, the
equation is based on the assumption that traders do not require any capital to trade the S&P 500
index. This is a common approach in option pricing research and a reasonable assumption due to
the wide availability of liquid futures contracts (Muravyev and Ni, 2020).

Delta. In my baseline specifications, I estimate options’ delta from the Black-Scholes-Merton for-
mula, where I set the expected volatility equal to the options’ own implied volatility relative to
the Black-Scholes-Merton pricing model. This approach to delta-hedging is common practice in
academia. The skew in option implied volatilities that is plugged into the delta formula across
strikes accounts for the fact that real-world equity market returns exhibit negative skewness and
excess kurtosis, which the Black-Scholes-Merton model does not account for in itself. For that
reason, traders sometimes refer to the practice of estimating BSM deltas via BSM implied volatil-
ities as “the wrong number in the wrong model giving the right result”. I lag options’ implied
volatility by one day to avoid biased delta estimates from the empirically negative correlation
between options’ implied volatility and equity market returns. For robustness, I repeat the main
steps of the analysis in the appendix with the pre-calculated deltas from the CBOE.

S&P 500 Option Positions. [ obtain “Open-Close Volume files” from the CBOE for the period
of 2011 to 2023. These files split daily option volumes by contract (puts vs calls, expiry date
and strike price), by trader group (“market maker”, “broker-dealer”, “firm”, “customer” and
“professional customer”), and by volume type (volume bought vs volume sold). Throughout the
paper, I refer to market makers as "dealers”.'® S&P 500 options have a contract multiplier of 100,
that is one option is written on 100 units of the underlying asset. To aid interpretability, I adjust
units such that one option is linked to 1 unit of the underlying, i.e. I multiply all option volumes
and positions by 100. I include all available S&P 500 options into the analysis: The standard
monthly SPX options and the weekly SPXW options.
I cumulate dealers’ daily net-buys of S&P 500 options into dealer positions, via

t
Net Position. = Z NetBuys, (A.2)
k=1

100pen-Close Volume files are available before 2011. However, over that earlier period, market makers are not separately
identified, but have to be imputed as the counterparty to firms and customers. In this paper, I focus on the period from
2011 onward, because of the higher options liquidity.
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where k is a time index from the beginning of my sample to the end of the current day t. I.e.
dealers’ NetPosition; in option i at the end of day ¢ is calculated as the cumulative sum over
all past daily dealer NetBuys:. Thus, NetPosition! is the number of contracts of option i that
dealers are long minus the number of contracts of option ¢ that dealers are short. Since options
are regularly listed and subsequently expire, this cumulation yields dealers’ option inventory after
a burn-in period. I choose a burn-in period of six months and thus arrive at my sample period of
2011.07 to 2023.07.

I illustrate the Dealer Position variable construction in figure A.13. I use the hypothetical
case of a market with only two options that are sequentially listed. The hypothetical Put 1 is
first listed on 21-September-2023, where the Open-Close data could show that the Dealer sector
bought 80 contracts and sold 10 contracts. Thus, Dealer Net Buys are 70 and since this is the
options’ first trade date Cumulative Dealer Net Buys are also 70. On the next day dealer buys
might be 50, sells might be 20, yielding net buys of 30 and cumulative net buys of 100 as the sum
of all past daily net buys. This process continues until the options’ expiration. Columns VII to X
illustrate an equivalent construction of cumulative dealer net buys for the hypothetical Put 2. 1
calculate the Dealer Position across options contracts as the sum of column VI and X. I calculate
dealers’ position with regards to some greek risk measure, for example Dealer Delta Position, as
the weighted sum of columns VI and X, where the weights are given by the respective options’
greek (here delta).

A.2. The S&P 500 Options Market

Options. Financial options are derivative contracts. They derive their value from the price S of
an underlying asset (or “underlying”). A “call” option confers the right - but not the obligation -
to buy one unit of the underlying at a pre-specified strike price K (or “strike”). A “put” option
confers the right to sell one unit of the underlying. The buyer (seller) of an options contract is
said to have a “long” (“short”) position. Options that can be exercised at any time before expiry
are called “American”, while those that can be exercised only at expiry are called “European”.
In this paper I focus on European options, which is the dominant type on U.S. equity options
markets. The owner of an option will only exercise the option if doing so confers a positive cash
flow. Exercising a call option confers a positive cash flow if the price of the underlying is above
the strike price of the option. As a result, a call options final payoff is maz(S — K, 0), since the
option will not be exercised if S < K. The reverse applies for put options, yielding a final payoff
of max(K — S,0). Figure A.10 illustrates the payoff profiles of call and put options.!!

Settlement. “Exercise will result in delivery of cash on the business day following expiration.
The exercise-settlement value, SET, is calculated using the opening sales price in the primary
market of each component security on the expiration date. The exercise-settlement amount is
equal to the difference between the exercise-settlement value and the exercise price of the option,
multiplied by $100. SPXW exercise will result in delivery of cash on the business day following
expiration. The exercise-settlement value is calculated using the closing sales price in the primary
market of each component security on the expiration date. The exercise-settlement amount is
equal to the difference between the exercise-settlement value and the exercise price of the option,
multiplied by $100.” 12

"Further details on the mechanics of options markets are in Hull (2022).
https://www.cboe.com/tradable_products/sp_500/spx_options/specifications/, accessed on June 13", 2024.
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Margins. “Purchases of puts or calls with 9 months or less until expiration must be paid for
in full. Writers of uncovered puts or calls must deposit / maintain 100% of the option proceeds
plus 15% of the aggregate contract value (current index level x $100) minus the amount by which
the option is out-of-the-money, if any, subject to a minimum for calls of option proceeds plus
10% of the aggregate contract value and a minimum for puts of option proceeds plus 10% of the
aggregate exercise price amount. For calculating maintenance margin, use option current market
value instead of option proceeds.”!?

Expiry Dates. The original SPX options expired once a month on that months’ 3" Friday.
Recently, the CBOE has successively added SPXW options with different expiry dates.!* To
reduce computing time, I restrict the study of option returns to the standard SPX options, while
for options positions I consider both SPX and SPXW options. Adding SPXW option returns does
not change the findings of this paper. SPX options are liquid across a broad range of strike prices,
which occur every $5. Liquidity is particularly high for out-of-the-money options, which are puts
(calls) with strike prices below (above) the current value of the underlying index. SPX options
are European options, so they can only be exercises at expiry.

Option Dealers. The “CBOE C1 Exchange Rule Book” Rule 5.51 specifies the obligations of
market makers. In particular, market makers on the CBOE C1 exchange are required to maintain
a continuous two sided market in the relevant instrument during normal trading hours. The CBOE
does not publish the names of their market makers. Anecdotally, option market makers are quite
specialized firms, like Optiver, but potentially also more general trading firms like Jane Street and
Citadel Securities, or even large investment banks like Goldman Sachs.

Option Trading Hours. Regular SPX option trading hours are 09:30 to 16:15 (E.T.). In 2015
the CBOE added a pre-market trading session from 03:00 to 09:15, and in 2021 the CBOE added
a post-market trading session from 20:15 to 03:00, such that ”Global Trading Hours” run from
20:15 to the following days 09:15, and ” Regular Trading Hours” run from 09:30 to 16:15.

The implied volatility surface An equivalent view on the expensiveness of put options, besides
the low delta-hedged returns, is the skew in the implied volatility (ivol) surface of equity index
options. An options’ ivol is the volatility that, if put into a pricing model, yields the current
option price that is observed in the market. Hence, ivol is always relative to some option pricing
model, such as the Black-Scholes-Merton model. Option traders often plot the ivol of options with
different strike prices and time to expiry. This yields the ivol surface. More expensive options have
higher ivols. For equity index options the ivol surface is usually highest for short-maturity out-
of-the-money put options. In this paper I focus on option returns instead of implied volatilities,
since returns allow for a more natural comparison between trading and non-trading periods.

A.3. The S&P 500 Equity Market

This section describes S&P 500 options’ underlying asset: The S&P 500 U.S. equity index. I
show that over the sample of 2011 to 2022 day and night returns are of similar magnitude, though
day returns are about 30% more volatile. Importantly, I show that overnight trading volume in
S&P 500 futures amounts to only about 20% of the daily total. These substantially lower night

3https://www.cboe.com/tradable_products/sp_500/spx_options/specifications/, accessed on June 13", 2024.
H8pecifically, the CBOE added weekly Friday expiries in 2011.09, Wednesday expiries in 2016.02, Monday expiries in
2016.08, Tuesday expiries in 2022.04, and Thursday expiries in 2022.05.
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volume in U.S. equities underlies my argument in subsequent sections that option dealers’ hedging
frictions are elevated over nights.

The S&P 500 Equity Index. The Standard & Poor’s (S&P) 500 index is an index for the
equity value of U.S. stocks with large market capitalizations. The index contains 500 stocks listed
on U.S. exchanges with the largest market capitalizations across a broad range of industries. The
index is 'capitalization-weighted’, i.e. the component stocks are weighted according to the total
market value of their outstanding shares, which is the share price times the number of shares
outstanding. Thus, each component stock’s price change impacts the index proportional to the
stock’s share of the total index market capitalization. The index concentration has recently risen,
but any stock rarely makes up more than 5% of the index value.

Equity Returns. Over my sample period (2011.01 to 2022.12) S&P 500 returns during the night
and day are of approximately equal magnitude. Figure A.2 illustrates this pattern. The figure
shows the cumulative return of S&P 500 E-Mini futures. The blue (red) line cumulates log returns
between 0945 (1615) and 1615 (0945). Returns are based on trade prices. I obtain data from
Boyarchenko, Larsen, and Whelan (2023) who sample the most liquid S&P 500 E-Mini futures
contract every day.

The return volatility and return skewness of S&P 500 returns is higher over days than nights.
Figure A.2 shows summary statistics for the night and day returns of S&P 500 E-Mini futures.
As discussed above, the distribution of day and night returns has a similar mean. However,
night returns are less volatile, leading to a higher ¢-statistic on the return average. The return
skewness too is higher for day than night returns. Thus, between 2011 and 2022, realized risk in
US equity returns has - if anything - been higher for day- than night returns. This is inconsistent
with an explanation where options are cheap intraday because equity crash risk is a night time
phenomenon.

Equity Return Volatility S&P 500 equity index returns are more volatile over days than nights.
Figure A.4 shows the monthly average of day (night) return volatilities in blue (red). The black
line shows the day-to-night volatility ratio on the right hand side axis. Over the sample of 2011 to
2022 the volatility of S&P 500 equity index futures returns is higher over day periods by a factor
of about 1.3. Table A.3 shows this formally.

Equity Trading Volume The trading volume in US equities is substantially lower overnight,
relative to intraday, over the entire sample of 2011 to 2022. Figure A.3 shows the average daily
dollar trading volume of S&P 500 E-Mini futures over day (blue) and night (red) periods. Following
the above equity return analysis, I measure days from 0945 to 1615 and nights from 1615 to 0945.
The average intraday E-Mini futures trading volume rises from an initial approximately 100 billion
dollars to 400 billion dollars towards the end of the sample, while the average overnight E-Mini
futures trading volume rises from approximately 5 billion dollars to 10 billion. Over the entire
sample overnight volumes are so low as to be barely visible at the bottom of the figure. The black
line shows the ratio between day and night trading volumes. This ratio is relatively stable around
25 throughout the sample and never dips below 12.

The trading volume of S&P 500 Futures is volatile and right-skewed over both day- and night
periods. Table A.2 shows summary statistics for the daily dollar trading volume of S&P 500 E-
Mini futures over day and night periods. The average intraday trading volume in S&P 500 E-Mini
futures between 2011 and 2022 was $ 164 billion, with a standard deviation slightly below the mean
and a positive skewness around 2. This is consistent with occasional large spikes in volumes during
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periods of crises, like March 2020. In contrast, the average overnight trading volume amounts to
only $ 7 billion, with a standard deviation slightly below the mean and a right tail that is even
more pronounced than for intraday volumes.

Equity Trading Hours Regarding equities, the current regular trading hours for all major U.S.
exchanges are 09:30 to 16:00 (E.T.). These trading hours have been in place since 1985, when the
NYSE moved the open time from 10:00. ETFs trade on the same exchanges as the underlying
stocks and the trading hours are equivalent. Before the 1990s trading stocks outside of regular
exchange trading hours would have required an over-the-counter transaction with a market maker
over the telephone. In 1991 the Instinet trading system allowed institutional investors to trade
stocks between 06:30 and 09:20. In 1998 the Nasdaq stock exchange introduced pre-market stock
trading from 08:00 to 09:30 , following a regulatory decision by the SEC. In the early 2000s, the
NYSE, CME, and others introduced pre-market sessions of their own.

In 1998, regulation ATS (Alternative Trading Systems) distinguished ATS from registered ex-
changes, and increased reporting requirements, thus prompting ECNs (Electronic Communications
Networks) to merge and register as exchanges. In 2001, Archipelago Electronic Communications
Network and the Pacific Exchange merged to create ArcaEx, the first totally electronic stock
exchange. In 2005, NYSE Hybrid Market was launched, creating a blend of floor-based auction
and electronic trading. In 2006, New York Stock Exchange became a public company and shortly
thereafter acquired Archipelago ECN. In connection with this, the NYSE eliminated the open
outcry system on the floor. In 2005, in order to regain the competitive advantage lost to the
rise of ECNs, Nasdaq held an initial public offering and purchased Instinet shortly thereafter. In
2005.04 Nasdaq trading hours were extended from 08:00 to 18:30 to 04:00 to 18:30. In 2006.09
Nasdaq extended trading hours further to 04:00 to 20:00, thus establishing the extended stock
trading hours that are valid throughout my sample.

Regarding S&P 500 futures trading hours, in 1995 S&P 500 futures began trading on the CME
Globex electronic exchange. Trading hours followed the major U.S. equity trading hours: 09:30 to
16:00. In 1997, S&P 500 E-Mini futures began trading on the CME Globex platform, with trading
hours from Sundays at 18:00 to Fridays at 17:00 and a daily maintenance period from 17:00 to
18:00.

A.4. Option Risk Premia and Pricing Theory

This section extends on the literature around option risk premia, option pricing models and mar-
ket frictions. I contrasts the two competing option pricing frameworks, “representative investor
models” and “dealer models”. I explain why it is difficult to test one type of model against the
other and I argue that day-night variation of market liquidity presents an opportunity to overcome
these difficulties.

Black-Scholes-Merton. The benchmark Black-Scholes-Merton option pricing model predicts
that delta-hedged option returns equal the risk-free rate. According to standard asset pricing
theory, the price of an asset is its expected payoff, discounted at some risk-adjusted rate. Black
and Scholes (1973) and Merton (1973) were the first to pinn-down the discount rate for a European
option. Thus, they derived the same, now famous, option pricing formula. Black and Scholes
(1973) derived the formula via the Capital Asset Pricing Model. Merton (1973) applied a dynamic
hedging argument. He set up a riskless portfolio of one option and A units of the underlying asset.
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Figure A.1: Investor Preferences to Option Risk Premia Under the Two Frameworks
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Note: This figure illustrates how investor preferences affect option risk premia under the two pricing frameworks. In
representative-investor models, investors risk aversion affects expected option returns directly, while also affecting dealer
inventory and thus dealer risk aversion. I dealer models, investor risk aversion affects expected option returns only through
the impact on dealers.

Under the assumptions of no-arbitrage pricing theory this portfolio must earn the risk-free rate of
return over a short period of time. Delta is the partial derivative of the option price with regards
to the price of the underlying: 3—5, where P is the price of the option and U is the price of the
underlying. When the price of the underlying changes, delta changes and the riskless portfolio
needs to be rebalanced to remain riskless. Hence the term dynamic hedging.'® This is why I study
delta-hedged option returns, where the hedge is rebalanced frequently. In addition, delta-hedging
improves the statistical properties of option returns.Due to options’ non-linear payoff profile, option
returns are highly non-normal. This reduces the applicability of standard econometric methods,

like t-statistics. Delta-hedging reduces this problem.

Representative-Investor Models. Option pricing models can be classified into two groups:
“representative investor models” and “dealer models”.'® The difference between the two types of
models lies in the relevance of market frictions. Agents in representative-investor models can be
heterogeneous along the dimensions of beliefs and risk-aversion, but all agents have equal access to
all relevant markets at all times. In particular for equity index options, equity markets and option
markets are integrated in such models. As a result, the fundamental theorem of asset pricing
applies to all agents and option prices reflect representative beliefs and risk-aversion. An example
of this class of models is Du (2011).

Dealer Models. In dealer models only intermediaries have unconstrained access to the options
market. Thus, the fundamental theorem of asset pricing applies only to option dealers and option
prices reflect dealers’” beliefs and risk-aversion. In these models, dealer risk exposure is typically
generated as a combination of exogenous demand pressures and unhedgeable risks. For example,

158ee Hull (2022) for further intuition and derivations.
'5This subsection draws on the surveys by Bates (2022) and Cuesdeanu and Jackwerth (2018), as well as the discussion
in Dew-Becker and Giglio (2023).
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Garleanu, Pedersen, and Poteshman (2009) develop a partial-equilibrium model with exogenous
option demand shocks and risk-averse dealers with fixed intermediation capacity. In their setting,
dealers are exposed to unhedgeable risks because of discrete trade time, local jumps- and stochastic
volatility in the underlying asset.

Representative-Investor Models vs. Dealer Models. It is difficult to separate the predic-
tions of representative-investor models and dealer models. Figure A.1 illustrates how predictive
power of dealer inventories for option risk premia can be consistent with either representative-
investor models or dealer models. The figures’ left side shows an example where only investor risk
aversion Yrppestor directly affects option risk premia. However, investor risk aversion also raises their
demand for puts, leading to negative DealerInventory and increased dealer risk aversion ypeqier -
In such a setting, dealers’ inventory predicts option risk premia even though intermediation does
not affects asset risk premia. The figures’ right side shows an example where investor risk aversion
affects option risk premia only through their impact on dealer inventories, for example because
regulation or market frictions prevent investors from selling options Bates (2022). Nonetheless,
measures of investor risk aversion correlate with option risk premia under this framework, too. As
a result, regressing option risk premia on measures of investor risk aversion or dealer inventories
cannot distinguish between the two option pricing frameworks.

Variation in the hedgeability of option positions presents an opportunity to distinguish representative-
investor models from dealer models. Dealer models predict elevated option risk premia over periods
with elevated market frictions. Dew-Becker and Giglio (2023) work out this model implication
explicitly. In this paper, I show that dealers liquidity demand for the adjustment of delta-hedges
is large relative to overnight equity trade volumes. Thus, overnight market illiquidity presents a
substantial hedging friction and night periods present an opportunity to distinguish representative-
invenstor mdoels from dealer models, since night periods occur predictably across economic states
and independent of aggregate economic risk aversion.

A recent literature addresses the endogeneity of dealer inventories and shows that intermedi-
aries matter for option risk premia. Muravyev (2016) employs a two-stage least squares approach
and regresses option returns on predicted dealer inventories. Chen, Joslin, and Ni (2019) identi-
fying periods where dealers’ trades in deep out-of-the-money puts are likely driven by tightening
dealer capital constraints. These papers show that dealers matter for option risk premia. This
paper shows that dealer inventory risk can fully explain option risk premia.
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A.5. Appendix: Figures

Figure A.2: Cumulative S&P 500 Returns: Day and Night
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Note: This figure shows that day-returns and night-returns of the S&P 500 index are of similar magnitude over my sample.
The figure shows the cumulative log return of S&P 500 E-Mini futures. The blue cumulates day returns, as measured
between 0945 and 1615. The red line cumulates night returns, as measured between 1615 and 0945. Returns are in logs and
are based on trade prices.
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Figure A.3: S&P 500 Futures Trade Volume
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Note: This figure shows the average daily dollar trading volume of the most liquid S&P 500 E-Mini futures contract. The
blue (red) line shows monthly average volumes between 0930 (1600) and 1600 (0930). The black line shows the ratio between
day and night volumes. The sample period is 2011.1 - 2022.12.
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Figure A.4: S&P 500 Return Volatility: Day vs. Night
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Note: This figure shows that S&P 500 returns are more volatile over day periods than night periods. The figure shows the
annualized return volatility of S&P 500 E-Mini futures. Blue (red) bars show the annualized volatility of day (night) returns
over the respective month. Day returns are measured between 0930 and 1600, night returns are measured between 1600 and
0930. The black line shows the ratio between day and night volatilities on the right hand scale.
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Figure A.5: S&P 500 Daily Return Volatility, Rolling
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Note: This figure shows the rolling volatility of S&P 500 index returns. Returns are measured close-to-close, i.e. 16:00 to
16:00 (E.T.). Volatility is measured over a rolling 365 day window and is annualized to 252 trade days.
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Figure A.6: The “VIX” Volatility Index
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Note: This figure shows the “VIX” index for the expected volatility of S&P 500 index returns. The VIX reaches a value of
83 in March 2020.
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Figure A.7: S&P 500 Equity Trade Volume
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Note: This figure shows the daily trade volume of the S&P 500 constituent stocks.

56



Figure A.8: Overnight Volumes Increased Relative to Weekend Volumes Around 2006

©
o
3

~
o
o

o
o
o

o
©
~

IN

w

n
o
N

i
j=}
-

o
o

Night Volume - Weekend Volume ($ bn.)
o
w

Night Volume - Weekend Volume ($ bn.)

DDOO0OO0O0O0O0O00O0O0 o od e od oA oo ed e d NN AN DDO 000000000 o ed ed od edododododed NN AN

OO 0000000000000 O00O0O000 0000 OO OO0 0O0O00O00O000O00000000 00O

H A NN ANNNNNNNNNNNNNNNNNNNNNN HA N NN NNNNNNNNNNNNNNNNNNNNN
(a) Futures (b) ETF

Note: This figure shows annual average night trade volumes minus annual average weekend trade volumes. Panel (a)
contains the most liquid S&P 500 E-mini futures contract. Panel (b) contains the S&P 500 SPY ETF. Weekend trade
volume is measured from Friday 16:00 to Monday 09:30. Night trade volume is measured from Monday 16:00 to Tuesday
09:30, etc.
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Figure A.9: S&P 500 Option Market Size
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Note: This figure shows that the market for S&P 500 options is large and growing. The upper dotted blue line shows S&P
500 options’ average monthly dollar open interest. The lower solid red line shows S&P 500 options’ monthly sum of dollar
trading volume.

58



350

300

250

Option Payoff | Value
= N
Q S
S 3

,_.
)
=]

@
=]

Figure A.10: Hlustration: Option Payoff, Value and Delta
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(b) Call Option

Note: This figure illustrates the payoff profile, value function and delta of put- and call option contracts. The payoff of a
put option is calculated as max(K-S,0), where K is the options’ strike price and S is the price of the underlying asset. Panel
a plots the payoff of a put option with K=2000 as a function of S. The payoff of a call option is calculated as max(S-K,0).
Panel b plots the payoff of a put option with K=2000 as a function of S.
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Figure A.11: Mlustration: Returns of Option Short Positions
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Note: This figure illustrates the impact of equity returns on the returns of an option short position. Panels (a), (b)
contains calls, (c), (d) contain puts. Panels (a), (c) assume that the option position is initially delta-hedged, but the hedge
is subsequently not adjusted. Panels (b), (d) assume unhedged options positions. Returns are simulated for option prices
following Black-Scholes-Merton pricing with implied volatility o = 0.8, risk-free rate » = 0.03, dividend yield ¢ = 0.05 and
an underlying price of = 5000. Short-maturity options have days to expiry T = 7, long maturity options have T' = 70.
Out-of-the-money puts (calls) have a strike price K = 4900 (K = 5100). In-of-the-money puts (calls) have a strike price

K = 5100 (K = 4900).
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Figure A.12: Option Returns Materialize During the Option Expiry Week
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Note: This figure shows that the nagetive night returns of S&P 500 put options materialize mostly over the five days before
the monthly 3" Friday option expiry. Day returns are measured from 09:45 to 16:15, night returns from 16:15 to 09:45.
Returns are delta-hedged at the start of the respective period. Option returns into expiry are excluded from the sample.
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Figure A.13:

Variable Construction: Dealer Position

v

Vi

Vil Vil IX X Xl
Weekday Date Put 1 Put 2 Sum Net Position
Buys sells Net Buys Net Position Buys Sells Net Buys Net Position
(=DB) (DS) (=DB-D5) (=CDNB1) (=CDNB2) (=CDNB1+ CDNB2)
Monday 18-Sep-23
Tuesday 19-Sep-23
Wednesday 20-5ep-23
Thursday 21-Sep-23 20 10 70 70 70
Friday 22-Sep-23 50 20 30 100 100
Saturday 23-Sep-23 100 100
Sunday 24-Sep-23 100 100
Monday 25-Sep-23 30 110 -80 20 a0 200 -160 -160 -140
Tuesday 26-5ep-23 200 10 190 210 30 150 -120 -280 -70
Wednesday 27-5ep-23 100 100 4] 210 100 100 o -280 -70
Thursday 28-Sep-23 0 100 50 50 -230 -230
Friday 29-5ep-23 1] 100 200 -100 -330 -330

Note: This figure illustrates the construction of the variable Dealer Net-Position from the CBOE OpenClose files. The
CBOE OpenClose Volume files contain for every day and every option contract the number of contracts that dealers buy
(col ITI) and the number of contracts sell (col IV). NetBuys is the number of contracts bought minus the number of contracts
sold. Net-Position is the cumulative sum of NetBuys. The figrue is adapted from Baltussen, Terstegge, and Whelan (2024).
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Figure A.14: Dealers’ Net-Position in Dollars
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Note: This figure shows dealers’ dollar net-position in S&P 500 options. Panel (a) shows the daily time-series of dealers’
dollar net-position in S&P 500 puts, panel (b) contains calls. Dealers’ dollar net-position is the dollar value of contracts that
dealers are long minus the dollar value of contracts that dealers are short. Section IV describes the variable construction.
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Figure A.15: Dealers’ Net-Gamma and Net-Vega
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Note: This figure shows option dealers’ Net-Gamma and Net-Vega. Net-Gamma (Net-Vega) is the sum-product of dealers’
option net-position and options gamma (vega). Gamma and Vega are from the Black-Scholes-Merton pricing model. Gamma
is multiplied by the value of the S&P 500 to adjust for the increasing value of the underlying asset. Gamma is in billions,
vega is in millions.
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Figure A.16: Dealers’ Exposure to Stochastic Volatility Risk
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Note: This figure shows estimated dealer PnL for different hypothetical changes in options’ implied volatilities. Dealers’
option positions are equal weighted, assuming a $1 position in every option. Option returns are delta-hedged, but hedges
are subsequently not adjusted. Section V describes the variable construction. The sample period is 2011 to 2023.
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A.6. Appendix: Tables

Table A.1: S&P 500 Returns, Day and Night

Mean t-stat Std Skewness Min P1 P50 P99 Max
Day 2.14 1.64 80.54 -0.24 -513.49 -241.44 5.56 208.43 507.82
Night  3.08 2.96 63.21 -0.28 -384.38  -185.28 5.35 170.87 419.54

Note: This table shows summary statistics for returns of the S&P 500 equity index over day and night periods. Day returns
are measured from 09:45 to 16:15 and night returns are measured from 16:15 to 09:45. Returns are measured from the
mid-quote of E-Mini S&P 500 futures contracts. Returns are in basis points. The sample period is 2011 to 2023.

Table A.2: S&P 500 Futures Trading Volume

Mean Std Skewness P10 P50 P90
Day 169.52 84.33 1.37 87.07 146.07 290.50
Night 39.68 23.70 2.25 18.59 32.72 69.05

Note: This table shows the daily dollar trading volume of the most liquid S&P 500 E-Mini futures contract. Row 1 (2)
contains volume between 0930 (1600) and 1600 (0930). Row 3 contains the sum of rows one and two. Trading volume is in
billion dollars. The sample period is 2011.1 - 2022.12.

Table A.3: S&P 500 Futures Return Volatility

Mean Std Skewness P10 P50 P90
Day 11.11 27.82 11.25 1.47 4.87 23.26
Night 8.04 23.39 13.34 1.10 3.31 15.84

Note: This table shows the daily return volatility of S&P 500 E-Mini futures. Row 1 (2) contains the volatility of returns
between 0930 (1600) and 1600 (0930). Volatility is annualized and in percent. The return volatility in March 2020 is
winsorized at 100%. The sample period is 2011.1 - 2022.12.
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Table A.4: S&P 500 Option Contract Specifications

Root SPX SPXW
Underlying S&P 500 -

Expiry Date 374 Friday a.m. any weekday, p.m.
Expiry Month Up to 12 months 5 weeks

Last Trade Date business day pre expiry  expiry day (1600 E.T.)
Strike Price every 5% -

Style European -

Settlement Cash -

Multiplier 100 -

Minimum Tick 0.05 -

Exchange CBOE -

Begin trading 1984 2010

Trading Hours, Regular 0930 to 1615 E.T. -

Trading Hours, Curb 1615 to 1700 E.T. -

Trading Hours, Global 0930 to 1615 E.T. -

Note: This table displays the contract specifications for the standard S&P 500 index options (SPX options) and the weekly
S&P 500 index options (SPXW options).
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Table A.5: Option Returns, Bootstrapped Standard Errors

Mean S.E. Std Skewness P10 P50 P90
Panel (a): Puts
Night Return (%) -2.49 0.24 12.40 9.31 -12.66 -2.50 6.30
Day Return (%) 0.39 0.26 13.51 5.02 -10.38 -1.56 11.30
Night minus Day Return (%) -2.88 0.38 18.48 0.62 -19.15 -1.34 11.95
Panel (b): Calls
Night Return (%) 0.32 0.49 27.72 10.13 -16.71 -2.41 18.44
Day Return (%) 0.32 0.47 22.75 4.89 -17.03 -3.06 19.12
Night minus Day Return (%) 0.00 0.69 36.38 2.86 -28.60 0.51 25.87

Note: Panel A (B) shows summary statistics for S&P 500 put (call) option returns. Within each panel, row 1 (2) contains
returns between 1615 (0945) and 0945 (1615). Returns are in excess of the risk-free rate. Returns are in percent. The sample
period is 2011 to 2023.

Table A.6: Option Alphas to the Equity Return

Mean t-stat Std Skewness P10 P50 P90
Panel (a): Puts
Night Return (%) -2.49 -10.41 12.33 9.34 -12.39 -2.39 6.23
Day Return (%) 0.45 1.76 13.25 4.58 -10.67 -1.30 11.47
Night minus Day Return (%) -2.94 -7.68 18.28 0.75 -19.43 -1.42 11.93
Panel (b): Calls
Night Return (%) 0.83 1.84 25.04 11.93 -14.96 -1.12 14.67
Day Return (%) 0.49 1.13 21.18 5.84 -15.42 -2.52 17.63
Night minus Day Return (%) 0.34 0.52 33.51 2.88 -23.92 1.56 23.03

Note: Panel A (B) shows summary statistics for S&P 500 put (call) option alphas. Within each panel, row 1 (2) contains
returns between 1615 (0945) and 0945 (1615). Alphas are obtained as the intercept of a univariate regression of delta-hedged
option returns on contemporaneous S&P 500 futures returns. Returns are in percent. The sample period is 2011 to 2023.

68



Table A.7: Option Returns, Early Sample

Mean t-stat Std Skewness P10 P50 P90
Panel (a): Puts
Night Return (%) -2.69 -9.54 9.34 3.30 -10.91 -3.10 4.70
Day Return (%) 0.71 1.68 13.85 4.37 -10.48 -1.79 40.31
Night minus Day Return (%) -3.39 -7.22 15.88 -1.54 -19.24 -1.51 10.91
Panel (b): Calls
Night Return (%) -2.71 -3.81 28.05 -0.08 -24.88 -4.22 21.39
Day Return (%) 1.08 1.10 35.79 2.43 -25.12 -3.72 97.30
Night minus Day Return (%) -3.79 -2.91 46.44 -1.43 -42.96 -1.37 35.86

Note: Panel A (B) shows summary statistics for S&P 500 put (call) option returns. Within each panel, row 1 (2) contains
returns between 1615 (0945) and 0945 (1615). Returns are in percent. The sample period is 2006 to 2011.
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Table A.8: Option Risk Premia via Alternative Deltas I

Mean t-stat Std Skew P10 P50 P90
Panel (a): Puts
Night Return (%) -2.31 -9.38 13.05 7.71 -12.90 -3.59 8.92
Day Return (%) -0.04 -0.13 15.61 4.29 -12.19 -3.14 43.95
Night minus Day Return (%) -2.28 -5.66 20.19 0.22 -19.81 -0.77 14.71
Panel (b): Calls
Night Return (%) 0.12 0.48 13.94 9.21 -9.91 -1.47 9.83
Day Return (%) 0.65 1.98 17.14 7.40 -11.71 -2.22 39.70
Night minus Day Return (%) -0.52 -1.16 22.45 -1.81 -17.33 0.80 15.42

Note: This table shows that the main result from table I is robust to alternative approaches to calculate delta for the
estimation of option risk premia. This table divides options’ implied volatilities by 1.3 before calculating delta, to account
for the volatility risk premium in implied volatilities. Panel (a) shows summary statistics for S&P 500 put option returns,
panel (b) contains calls. Within each panel, row 1 (2) contains returns between 16:15 and 09:45 (09:45 and 16:15). Returns
are in percent and in excess of the risk-free rate. Returns are delta-hedged at the beginning of the respective period. The
sample period is 2011 to 2023.

Table A.9: Option Risk Premia via Alternative Deltas II

Mean t-stat Std Skew P10 P50 P90
Panel (a): Puts
Night Return (%) -2.38 -10.10 12.02 10.79 -11.72 -2.52 6.33
Day Return (%) 0.22 0.90 12.91 4.69 -10.22 -1.46 31.16
Night minus Day Return (%) -2.60 -6.94 17.70 1.37 -18.49 -1.32 11.53
Panel (b): Calls
Night Return (%) -0.51 -1.42 20.55 2.76 -18.60 -2.29 19.56
Day Return (%) 0.22 0.44 22.52 4.27 -19.42 -3.17 59.14
Night minus Day Return (%) -0.73 -1.11 31.27 -1.16 -31.31 0.04 29.98

Note: This table shows that the main result from table I is robust to alternative approaches to calculate delta for the
estimation of option risk premia. This table uses the CBOE pre-calculated option deltas. Panel (a) shows summary
statistics for S&P 500 put option returns, panel (b) contains calls. Within each panel, row 1 (2) contains returns between
16:15 and 09:45 (09:45 and 16:15). Returns are in percent and in excess of the risk-free rate. Returns are delta-hedged at
the beginning of the respective period. The sample period is 2011 to 2023.
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Table A.10: The Cross-Section of Intraday Put Returns

Days to Expiry

2-70 71- All

0.00 < |A| <0.25 Deep Out of the Money 58.0 -0.2 41.7
(1.6) (~0.0) (1.4)

0.25 < |A| £ 0.50 Out of the Money -1.2 -1.0 -3.9
(—0.1) (—0.3) (—0.3)

0.50 < |A| <0.75 In the Money 1.8 -2.0 0.9
(0.2) (—0.2) (0.1)

0.75 < |A| < 1.00 Deep In the Money 4.2 22.9 4.6
(0.3) (1.3) (0.3)

All 45.0 -0.7 32.9
(1.6) (—0.1) (1.4)

Note: This figure shows average S&P 500 put option returns for six portfolios, sorted by days to expiry and moneyness.
Returns are measured from shortly after option market open at 0945 to the subsequent market close at 1615. Returns
delta-hedged and in excess of the risk-free rate. Returns are in basis points. Newey-West t-statistics are in brackets. The
sample period is 2011 to 2023.
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Table A.11: The Cross-Section of Intraday Call Returns

Days to Expiry

2-70 71- All

0.00 < |A| <0.25 Deep Out of the Money -0.5 17.8 5.0
(—0.0) (0.6) (0.1)

0.25 < |A| < 0.50 Out of the Money 4.0 8.8 2.5
(0.3) (0.0) (0.2)

0.50 < |A| <0.75 In the Money 2.6 4.9 2.8
(0.3) (1.1) (0.3)

0.75 < |A| < 1.00 Deep In the Money 6.0 -5.8 3.0
(0.9) (—0.5) (0.7)

All 39.2 24.7 35.6
(0.8) (1.4) (0.9)

Note: This figure shows average S&P 500 put option returns for six portfolios, sorted by days to expiry and moneyness.
Returns are measured from shortly after option market open at 0945 to the subsequent market close at 1615. Returns
delta-hedged and in excess of the risk-free rate. Returns are in basis points. Newey-West t-statistics are in brackets. The
sample period is 2011 to 2023.

Table A.12: The Cross-Section of Overnight Call Returns

Days to Expiry

2-70 71- All

0.00 < |A| <€ 0.25 Deep Out of the Money 78.0 33.6 74.6
(0.8) (1.1) (0.8)

0.25 < |A] < 0.50 Out of the Money -3.9 -20.1 -3.2
(—0.2) (=3.7) (—0.2)

0.50 < |A| <0.75 In the Money -24.0 -13.3 -21.1
(—3.1) (—3.5) (—3.4)

0.75 < |A| < 1.00 Deep In the Money -19.3 -T.7 -16.3
(—3.1) (—1.9) (—3.1)

All 29.9 -2.7 20.5
(0.6) (—0.2) (0.5)

Note: This figure shows average S&P 500 put option returns for six portfolios, sorted by days to expiry and moneyness.
Returns are measured from option market close at 1615 to the subsequent market open at 0945. Returns delta-hedged and
in excess of the risk-free rate. Returns are in basis points. Newey-West t-statistics are in brackets. The sample period is
2011 - 2023.
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Table A.13: The Cross-Section of Dealers’ Call Position

0.00 < |A| < 0.25
0.25 < |A| < 0.50
0.50 < |A| < 0.75
0.75 < |A| < 1.00
All

Days to Expiry

2-70 71- All
Deep Out of the Money -0.84 -0.50 -1.33
Out of the Money 1.55 0.87 2.42
In the Money 1.40 0.47 1.87
Deep In the Money 0.61 -0.01 0.59

2.72 0.83 3.55

Note: The table shows dealers’ net position in S&P 500 call options by moneyness and days to expiry. Dealer net position
is the number of contracts that dealers are long minus the number of contracts that dealers are short. Section IV describes

the variable construction. Numbers are in millions. The sample period is 2011 to 2023.

Table A.14: Dealers’ Equity Price Gap Risk from Calls

0.00 < |A| < 0.25
0.25 < |A] < 0.50
0.50 < |A| < 0.75
0.75 < |A] < 1.00
All

Days to Expiry

2-70 71- All
Deep Out of the Money -5.6 -0.6 -6.2
Out of the Money 2.9 0.3 3.2
In the Money 1.6 0.1 1.7
Deep In the Money 0.3 0.0 0.3
-0.7 -0.2 -0.9

Note: This figure shows dealers’ expected PnL from a -6% return in the underlying S&P 500 index by portfolio of call
options. Section V describes the variable construction. Numbers are in million dollars. The sample period is 2011 to 2023.

Table A.15: Aggregate Dealer Gap Risk: Summary Stats

Dealer Gap Risk (bn)

Mean Std Skew

P5 P50

P95

-179.7 430.9 -5.6

-865.3

-453.6

14.8

Note: This table shows summary statistics for option dealers’ inventory risk exposure to overnight equity price gaps as
estimated in section V. That is, the table shows the estimated dealer Profit-and-Loss from a —5% return in the underlying

S&P 500. Inventory risk is in millions of dollars. The sample period is 2011 to 2023.
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Table A.16: Intra-Week Option Returns are Reduced after the Growth of Overnight Equity Trad-

ing
(’03) (’04) (’05) (’06) (07) (’08) (’09)

IntraWeek 101.2 45.4 78.2 1272 166.5*  268.6"*  202.8%*
(0.84)  (0.41)  (0.77)  (L37)  (1.92)  (3.09)  (3.30)

Post A11.4%% 44827 -400.9%**  -349.5***  -324.6*** -257.7"*  -287.6**

(-3.04)  (-3.45)  (-3.18)  (-2.83)  (-2.64)  (-2.07)  (-2.25)

IntraWeek x Post ~ 468.9%*  571.6™*  553.2***  507.0*  471.7°%*  321.6**  208.5**
(3.18) (4.04) (4.03) (3.76) (3.51) (2.35) (2.13)

Constant -266.9%*  -256.0"*  -303.9°%*  -350.7** -377.9%**  -427.6%  -421.3%*
(-2.42)  (-252)  (-3.27)  (-4.12)  (-4.77)  (-5.73)  (-5.45)

Observations 6,958 6,958 6,958 6,958 6,958 6,958 6,958

R2-adjusted 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Note: This table is equivalent to table VIII, but excludes the crisis months 2008.08, 2008.09, 2009.10, 2018.02, 2020.02,
2020.04, 2020.04.
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