Gender Composition and High-Stakes Cognitive Performance: Evidence from a Quasi-Randomized Experiment

Xuan LiXiang ZhouBoston UniversityXiangtan University

December 6, 2024

- Debates surrounding diversity (e.g., gender composition) in schools remain contentious.
- Concerns about diversity often highlight the challenges that <u>intensive daily</u> <u>interactions</u> pose to underrepresented or discriminated-against groups.
- This paper: Whether the mere presence of other groups can affect educational outcomes?

Setting: National College Entrance Examination (Gaokao)

- Organization of the Gaokao:
 - ightarrow The exam spans two days, and students complete the tests individually.
 - \rightarrow Students are randomly assigned to test rooms.
- A high-stakes exam
 - ightarrow College admission is determined solely by the score achieved in the Gaokao
 - \rightarrow Attending an elite college offers substantial benefits.
- **Research Question:** Does the proportion of males in the test room affect the performance of female students during a high-stakes, non-interactive exam?

Main Findings

- An increased presence of male students in the test room decreases the performance of female students but has no effect on male students.
- Channel: Stereotype threat.
 - $\rightarrow\,$ The presence of males is a common cue for triggering stereotype threat in lab experiments.
 - $\rightarrow\,$ The effect of gender composition varies based on individuals' beliefs about stereotypes, particularly among those who:
 - have low performance in STEM subjects,
 - have high performance in non-STEM subjects, and
 - come from high school classes with a higher proportion of male students.

Related Literature

- Diversity and Educational Outcomes
 - $\rightarrow\,$ The first study to demonstrate the passive effects of gender composition on academic outcomes.
- Stereotype Threat
 - ightarrow The first study conducted in a real-world, high-stakes setting with a large sample size.
 - → We demonstrate that vulnerability to stereotype threat is influenced by individuals' beliefs about stereotypes, which helps to reconcile inconsistencies in the literature.

Administrative Student-level Data

- A county in the Central China
- Sample period: 2019
- 127 test rooms, with 30 students in each room.
- Two academic tracks:
 - ightarrow Science
 - 1509 male students and 1131 female students
 - \rightarrow Liberal arts
 - 382 male students and 788 female students.

127 Test Rooms: 88 Science, 39 Liberal Arts

The histogram of the test room's gender composition aligns with the expected pattern of

a binomial distribution. \bigcirc Histogram of χ^2 Statistic

Administrative Student-level Data

- Variables
 - \rightarrow Total Gaokao score (only available for these obtain college admission)
 - \rightarrow Mock exam score (by subjects)
 - ightarrow High school, class
 - $ightarrow \,$ Test center, test room
 - \rightarrow Individual characteristics: gender, ethnicity, date of birth, student leader, etc.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
VARIABLES	Han	Age	CYL	Leader	Urban	Mock Exam Score	Admission		
Panel A: Male									
MaleRatio	-0.00302	0.264	-0.0194	0.0153	-0.144	-0.147	0.0562		
	(0.0185)	(0.198)	(0.0657)	(0.0881)	(0.100)	(0.289)	(0.119)		
Track FEs	Х	х	Х	х	Х	Х	Х		
Panel B: Female									
MaleRatio	0.00397*	-0.252	-0.00602	0.0439	0.00366	-0.0644	-0.000647		
	(0.00235)	(0.202)	(0.0390)	(0.0812)	(0.0938)	(0.235)	(0.104)		
Track FEs	Х	х	х	х	х	Х	Х		

 $StdScore_i = \beta_1 MaleRatio_r + \gamma Ind_i + \phi TR_r + \pi_h + \pi_c + \epsilon_i$

- *StdScore_i*: the standardized total score of student *i* in the *Gaokao*.
- *MaleRatio_r*: the proportion of male students in the test room *r*.
- *Ind_i*: individual-level characteristics
- *TR_r*: test room characteristics
- π_h : high school class fixed effects
- π_c : test-center fixed effects
- Standard errors are clustered at the test-room level.

Results

	Panel A: Male			Panel B: Female			Panel C: All	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
VARIABLES	Std Score		Std Score			Std Score		
MaleRatio (β_1)	0.0918	0.0931	0.0609	-0.350*	-0.607**	-0.396**	0.105	0.220
	(0.198)	(0.574)	(0.178)	(0.185)	(0.281)	(0.172)	(0.185)	(0.444)
Female (β_2)							0.241	0.672***
							(0.148)	(0.145)
MaleRatio*Female (β_3)							-0.517**	-0.660
							(0.248)	(0.464)
$H_0:\beta_1+\beta_3=0$							-0.412**	-0.441*
							(0.191)	(0.260)
Observations	1,095	258	1,354	871	614	1,485	1,966	874
Ind Controls	х	х	х	x	Х	х	x	х
Test-Room Controls	х	х	х	x	Х	х	x	Х
Test-Center FEs	х	х	х	x	Х	х	x	Х
Class FEs	х	х	х	x	Х	х	x	Х
Sample	Science	Liberal Arts	All	Science	Liberal Arts	All	Science	Liberal Arts

Economic Significance

- Science track:
 - $\rightarrow~$ a test room with 15 male students \rightarrow 20 male students
 - $\rightarrow~\downarrow$ 7.3 points (0.167 * -0.412 * 105.8)
 - $ightarrow\,$ Ranking (at most) \downarrow 6,400 out of 210,000 students
- Liberal arts track:
 - $\rightarrow~$ a test room with 10 male students \rightarrow 15 male students
 - ightarrow \downarrow 6.8 points (0.167 * -0.441 * 92.3)
 - $\rightarrow~$ Ranking (at most) \downarrow 4,100 out of 150,000 students

Stereotype Threat

- The fear or anxiety of confirming a negative stereotype about one's social group
- An prevalent stereotype is the belief that women are bad at STEM subjects.
 - $ightarrow\,$ 60% of male students and 50% of female students in China agree with this.
- The presence of males is a common cue for triggering stereotype threat in lab experiments (Inzlicht and Ben-Zeev, 2000)

Who Holds Stereotypes?

- China Education Panel Survey (2013)
 - ightarrow Do you agree that boys are better at mathematics than girls?
- Sample: Grade 9 female students
- Individual-level features
 - \rightarrow STEM exam score
 - \rightarrow Non-STEM exam score
- Class-level features
 - $\rightarrow~$ Class male ratio
 - $\rightarrow\,$ Whether males perform better than females in STEM subjects

	(1)	(2)	(3)	
VARIABLES	Gender Stereotype			
STEM Exam std score	-0.148***	-0.163***	-0.167***	
	(0.0147)	(0.0154)	(0.0145)	
Non-STEM Exam std score	0.0690***	0.0783***	0.0859***	
	(0.0168)	(0.0168)	(0.0166)	
Class Male Ratio (Above Median)			0.0378*	
			(0.0213)	
Class: Males Performing Better in STEM			0.0332	
			(0.0370)	
Observations	3,548	3,547	3,548	
R-squared	0.045	0.151	0.110	
Class FEs		Х		
School FEs			Х	

	(1)	(2)	(3)	(4)
VARIABLES	Std Score	Std Score	Std Score	Std Score
MaleRatio	-0.418***	0.000745	-0.140	0.252
	(0.160)	(0.143)	(0.223)	(0.594)
STEM Mock Exam Std Score	0.363***			
	(0.0796)			
Non-STEM Mock Exam Std Score		1.044***		
		(0.0652)		
MaleRatio*STEM Mock Exam Std Score	0.304*			
	(0.162)			
MaleRatio*Non-STEM Mock Exam Std Score		-0.631***		
		(0.132)		
MaleRatio*HS Class Male Ratio (Above Median)			-0.728**	
			(0.333)	
MaleRatio*HS Class: Males Performing Better in STEM				-1.445
				(1.144)
Observations	1,423	1,423	1,485	1,458
R-squared	0.764	0.812	0.645	0.634
Ind Controls	х	х	х	х
Test-Room Controls	х	Х	Х	Х
Test-Center FEs	х	Х	Х	Х
Class FEs	х	х	х	х
Sample	All	All	All	All

Alternative Interpretations

- Gender Differences in Competition
 - $\rightarrow~$ Levels of competitiveness are the same
 - Identical exams
 - Same pool of competitors
 - ightarrow Inconsistent with heterogeneity analysis of gender stereotype endorsement

Conclusions

- The effect of gender composition goes beyond social interaction and active peer influence.
- Policy relevance:
 - ightarrow Standardized tests are widely used and carry high stakes.
 - \rightarrow Most testing environments are mixed-gender.
 - \rightarrow Gender stereotypes are prevalent worldwide.
- Policy recommendation: Implement a single-gender test environment.

Thank You!

Xuan Li

Job Market Candidate, Boston University

Email: xuanli@bu.edu

Website: www.xuan-li.net

Histogram of χ^2 Statistic

Gender Composition and Other Test Room Characteristics

	(1)	(2)	(3)	(4)	(5)
VARIABLES	HanRatio	Average Age	CYLRatio	ClassLeaderRatio	UrbanRatio
MaleRatio	-0.00181	0.114	-0.0385	0.0184	-0.0501
	(0.00919)	(0.141)	(0.0381)	(0.0522)	(0.0555)
Observations	127	127	127	127	127
Track FEs	Х	Х	Х	Х	Х

Raw Score

Panel B: Liberal Arts

