Gender and Carbon Footprints

$Ondine \; Berland^1 \quad Marion \; Leroutier^2$

¹Paris-Saclay Applied Economics, INRAE & AgroParisTech

²Institute for Fiscal Studies

April 2024

Challenges for climate policy acceptance

- ▶ Need to curb carbon emissions to attain sustainability goals
- ▶ Low support for climate policies needs to be better understood Dechezleprêtre et al. (2022): in high-income countries
 - Support for carbon tax with cash transfers below 35%
 - Support for ban on combustion-engine cars below 45%
- ▶ Do differences in emissions explain support for climate policies?
 - ▶ No database matches carbon footprints and voters preferences at the individual level
 - ▶ Within income heterogeneity explains a large share of household level variation in carbon footprints (Cronin et al., 2019, Douenne, 2020, Berland, 2024)
 - $\rightarrow\,$ Gender may significantly influence both the carbon footprints and support for climate policies

No consensus around the gender emission gap

Data challenges

- Consumption data: household level data hiding individual level heterogeneity
- Environmental info: average emission intensities hiding product level heterogeneity

In the literature: positive gap for men, uncertain magnitude

Study	Gender Gap	# of Respondents	Sectors
Carlsson Kanyama et al. (2021)	16% (only for fuel)	620 single adults	All
Rippin et al. (2021)	41%	212	Food
Scarborough et al. (2023)	No gap	55,504	Food
Masset et al. (2014)	24%	1,918	Food

Table: Overview of Studies on Gender Gaps in Environmental and Food Sectors

Study the gender emission gap

French context

- ▶ Available individual-level data and detailed environmental info
- Expected high external validity (for high-income countries) given gender norms and support for climate policies comparable to the UK and the US

Food and Transport: 50% of households' total footprint

- ▶ Large differences in the carbon intensity across options (modes/goods)
- ▶ Habits formed early in life \rightarrow potentially high welfare loss

Climate policy preferences

▶ Attitudinal survey to elicit support for policies

What we find

Evidence a 23% gender emission gap

- ▶ 20% after controlling for socio-demographics
- Gender emission gap explained by differences in volumes and emission intensities

Study differential support for environmental taxation policies

- ▶ Women show stronger environmental concerns
- ▶ We do not observe stronger support for climate policies

Outline

Motivation

Data and Method

Gender Emission Gap

Support for Climate Policies

Data sources: individual level consumption

Transportation

- ▶ French National Transport Survey, 2019
- ▶ **12,569 adults** asked about all their trips for short-distance and long-distance mobility

Food

- ▶ INCA3 2017 (French Food Agency)
- ▶ 2,000 adults reporting their detailed daily food consumption
- \rightarrow 50% of households' total footprint

Emissions Measurement

Transportation (• Intensities per km)

- Trip-level emissions from on i) distances ii) mode iii) mode-(vehicle-) specific emission intensity
- ▶ Aggregated at individual level

Food • Intensities per kg

- ▶ Product-level emissions based on volumes and product intensities ▶ Matching
- Aggregated at individual level

Outline

Motivation

Data and Method

Gender Emission Gap

Support for Climate Policies

23% Raw gender gap

Figure: Individual CO2 emissions associated with daily food consumption and transport use by gender Note: Source: Averages calculated with survey weights.

What can rationalize the gender emission gap?

Socio-demographics

- ▶ women could work part-time
- ▶ men could be richer

Volumes

- women commute shorter distances
- ▶ men should eat more

Intensities

- ▶ more red meat for men
- ▶ faster car for men

Persists after controlling for socio-demographics

Figure: Estimated gender gap in emissions, women-men Note: Source: S-D stands for short-distance and L-D for long-distance; hh size stands for household size

Is it just a matter of scale?

Figure: Scale effect
Calories total

Intensities also explain the gap

Figure: Emission intensity effect
• Calories

Outline

Motivation

Data and Method

Gender Emission Gap

Support for Climate Policies

Linking the gender emission gap and support for climate policies

Given the gender emission gap, women should bear a lower burden of climate policies

Does it translate into higher support?

Attitudinal survey data

▶ Barometer on social representations and climate change (ADEME)

- ▶ 7 waves of data (2016 and 2022)
- \blacktriangleright 10,145 individuals

▶ Socio-demographics are harmonized with other data sources

Gap might be associated with stronger environmental concerns

Figure: Gender gap in climate concerns Note: Survey data from ADEME 2016-2022

But does not imply systematic stronger support for climate policies

Figure: Gender gap in support for climate policies Note: Survey data from ADEME 2016-2022

Discussion

Large gender emission gap for food and transport

- \triangleright 23% (20% after controlling for socio-demographics)
- Gender emission gap explained by differences in volumes and emission intensities

Women show more climate concern

- ▶ But no stronger support for climate policies
- ▶ Next: Distribution of climate cost policies by gender Method Gap in Scanner data
 - Demand reactions across products categories with heterogeneous intensities
 - Preliminary results: little to no differences in elasticities on top polluting good

References I

- Banks, J., Blundell, R., and Lewbel, A. (1997). Quadratic engel curves and consumer demand. Review of Economics and Statistics, 79(4):527–539.
- Carlsson Kanyama, A., Nässén, J., and Benders, R. (2021). Shifting expenditure on food, holidays, and furnishings could lower greenhouse gas emissions by almost 40%. Journal of Industrial Ecology, 25(6):1602–1616.
- Cronin, J. A., Fullerton, D., and Sexton, S. (2019). Vertical and horizontal redistributions from a carbon tax and rebate. Journal of the Association of Environmental and Resource Economists, 6(S1):S169–S208.
- Deaton, A. and Muellbauer, J. (1980). An almost ideal demand system. The American economic review, 70(3):312–326.
- Dechezleprêtre, A., Fabre, A., Kruse, T., Planterose, B., Chico, A. S., and Stantcheva, S. (2022). Fighting Climate Change: International Attitudes Toward Climate Policies. NBER.
- Douenne, T. (2020). The vertical and horizontal distributive effects of energy taxes: A case study of a french policy. The Energy Journal, 41(3):231–254.

References II

- Galiana, L. and Suarez Castillo, M. (2022). Fuzzy matching on big-data: an illustration with scanner and crowd-sourced nutritional datasets. In Proceedings of the 2022 ACM Conference on Information Technology for Social Good, pages 331–337.
- Masset, G., Vieux, F., Verger, E. O., Soler, L.-G., Touazi, D., and Darmon, N. (2014). Reducing energy intake and energy density for a sustainable diet: a study based on self-selected diets in french adults. The American journal of clinical nutrition, 99(6):1460–1469.
- Rippin, H. L., Cade, J. E., Berrang-Ford, L., Benton, T. G., Hancock, N., and Greenwood, D. C. (2021). Variations in greenhouse gas emissions of individual diets: Associations between the greenhouse gas emissions and nutrient intake in the united kingdom. Plos one, 16(11):e0259418.
- Scarborough, P., Clark, M., Cobiac, L., Papier, K., Knuppel, A., Lynch, J., Harrington, R., Key, T., and Springmann, M. (2023). Vegans, vegetarians, fish-eaters and meat-eaters in the uk show discrepant environmental impacts. Nature Food, 4(7):565–574.

APPENDIX

Aim: reduce the distance between text samples Advantages over supervised ML: flexible matching, no need for training set

- **Definition**: natural language processing (NLP) algorithm projecting text (bags of words) as vectors and computing distances between them.
- **Decision criterion**: maximization of the similarity between vectors

Fuzzy Matching II

Choices:

- ▶ "BERT" Language model applied to French Context: 'Camembert'
- ▶ Maximise cosine similarity between vectors

[**Disclaimer**: no standard method was found in the literature, Galiana and Suarez Castillo, 2022]

2 steps fuzzy matching with manual checks

- 1. Matching over product categories (to minimize error)
- 2. Matching over product (within each product category)
- 3. 2/3 of products have a score below $0.94 \to$ replace by average emission intensity in the product category

▶ Back

Emission intensities: Transport

Figure: Emission intensity by transport category (averages) Note: Emission intensity in gCO2/km.passenger. Difference in average car occupancy rates for short- vs long-distance trips explain differences in intensities Back

Emission intensities: Food

Calories

SD of food volume or calories

Calories

Figure: Emissions per Calorie • Back

Test heterogeneity in reaction to prices change

Study demand reactions across products categories with heterogeneous intensities

Structural demand model • QAIDS model

► Model inter-categories relations • Identification

 $\rightarrow\,$ Compare the estimated budget share elasticities for men and women

Requires data with variation in quantities and price information

▶ Use household-level scanner data ▶ Detail

Available for food-at-home (for now)

► Focus on single-adults: robust gender emission gap • Scanner: gender emission gap

Almost-ideal demand system model from Deaton and Muellbauer (1980) Estimated in its guadratic version as developed by Banks et al. (1997)

$$\mathrm{s}_{ijt} = \sum_{j'} \gamma_{jj'} \ln \mathrm{P}_{ij't} + \sum_{\mathrm{r}=1}^{2} \beta_{j\mathrm{r}} \ln \left(\mathrm{X}_{i\mathrm{t}} \right)^{\mathrm{r}} + \Pi \mathrm{Z}_{i\mathrm{t}} + \epsilon_{ij\mathrm{t}}$$

Structural Estimation

$$\mathrm{s}_{\mathrm{ijt}} = \sum_{\mathrm{j}'} \gamma_{\mathrm{jj}'} \ln \mathrm{P}_{\mathrm{ij't}} + \sum_{\mathrm{r}=1}^{2} \beta_{\mathrm{jr}} \ln \left(\mathrm{X}_{\mathrm{it}} \right)^{\mathrm{r}} + \Pi \mathrm{Z}_{\mathrm{it}} + \varepsilon_{\mathrm{ijt}}$$

- \blacktriangleright household i, product category j, period t
- \triangleright s_{ijt} expenditure share per product category
- ▶ P_{ijt} Price per category
- ► X_{it} Total food expenses
- \triangleright Z_{it} Demand shifters
 - Control variables: age, car ownership, education, household size.
 - Regional x Period dummies.

Structural Estimation

$$\mathrm{s}_{ijt} = \sum_{j'} \gamma_{jj'} \ln \mathrm{P}_{ij't} + \sum_{\mathrm{r}=1}^{2} \beta_{j\mathrm{r}} \ln \left(\mathrm{X}_{i\mathrm{t}} \right)^{\mathrm{r}} + \mathsf{\Pi} \mathrm{Z}_{i\mathrm{t}} + \varepsilon_{ij\mathrm{t}}$$

 $\rightarrow \gamma_{j}$ are price effects, $\beta_{j\mathbf{r}}$ capture income effects. \bullet Back

Identification

'Observed' Price endogeneity:

- ▶ Determinants of prices (quality & local shocks).
- \rightarrow Leave one out prices per category at the living zone level: P_{-it,j}
- ▶ Identifying assumptions:
 - Within the living zone, at the food category level: retailers do not react strategically to demand shocks.
 - Measurement errors are independent across households within a living zone conditional on the control variables.

Expenses endogeneity:

- ▶ Simultaneity between total food expenses & budget shares.
- ▶ IV: log-income per consumption unit (Banks et al., 1997). F-stat=82

Income distribution by household type

Variable	Single	Multi-Adults	
	Women	\mathbf{Men}	
Income (\notin /month)	$1815.92 \ (1017.82)$	$2092.13\ (1256.84)$	$3209.09 \ (1966.55)$
Income (\notin /month/cu)	1741.49 (982.12)	$2066.78\ (1264.41)$	$1813.20\ (1167.94)$

Table: Monthly Income and Income per Consumption UnitNotes: SD in parenthesis, cu defined following the OECD-modified scale. Kantar 2017-2018.

Kantar World Panel for France (2017-2018):

 \blacktriangleright Household-level data \rightarrow focus on single-adult households

► Food-at-home

▶ 2k single-adult households (30%) ● Income by hh type

▶ Back

Estimation: budget share elasticities

	Women	Men
Estimated Budget share	0.054^{***}	0.060***
	(0.001)	(0.001)
Income elasticity	1.113^{***}	1.466^{***}
	(0.177)	(0.165)
Uncompensated own price elasticity	-1.062^{***}	-0.956***
	(0.081)	(0.042)
Compensated own price elasticity	-1.001***	-0.869***
	(0.087)	(0.046)

Table: Estimates for red meat for women and men.

Gender Emission Gap: Scanner data

