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Challenges for climate policy acceptance

I Need to curb carbon emissions to attain sustainability goals

I Low support for climate policies needs to be better understood Dechezleprêtre
et al. (2022): in high-income countries

- Support for carbon tax with cash transfers below 35%
- Support for ban on combustion-engine cars below 45%

I Do differences in emissions explain support for climate policies?
I No database matches carbon footprints and voters preferences at the individual

level
I Within income heterogeneity explains a large share of household level variation

in carbon footprints (Cronin et al., 2019, Douenne, 2020, Berland, 2024)

→ Gender may significantly influence both the carbon footprints and support for
climate policies
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No consensus around the gender emission gap
Data challenges
I Consumption data: household level data - hiding individual level heterogeneity

I Environmental info: average emission intensities - hiding product level
heterogeneity

In the literature: positive gap for men, uncertain magnitude

Study Gender Gap # of Respondents Sectors

Carlsson Kanyama et al. (2021) 🇸🇪 16% (only for fuel) 620 single adults All
Rippin et al. (2021) 🇬🇧 41% 212 Food
Scarborough et al. (2023) 🇬🇧 No gap 55,504 Food
Masset et al. (2014) 🇫🇷 24% 1,918 Food

Table: Overview of Studies on Gender Gaps in Environmental and Food Sectors
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Study the gender emission gap

French context

I Available individual-level data and detailed environmental info

I Expected high external validity (for high-income countries) given gender
norms and support for climate policies comparable to the UK and the US

Food and Transport: 50% of households’ total footprint

I Large differences in the carbon intensity across options (modes/goods)

I Habits formed early in life → potentially high welfare loss

Climate policy preferences

I Attitudinal survey to elicit support for policies
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What we find

Evidence a 23% gender emission gap

I 20% after controlling for socio-demographics

I Gender emission gap explained by differences in volumes and emission
intensities

Study differential support for environmental taxation policies

I Women show stronger environmental concerns

I We do not observe stronger support for climate policies
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Data sources: individual level consumption

Transportation

I French National Transport Survey, 2019

I 12,569 adults asked about all their trips for short-distance and long-distance
mobility

Food

I INCA3 2017 (French Food Agency)

I 2,000 adults reporting their detailed daily food consumption

→ 50% of households’ total footprint
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Emissions Measurement

Emissions︸ ︷︷ ︸
kg CO2 eq

= Volumes︸ ︷︷ ︸
kg or km

× IntensityFactor︸ ︷︷ ︸
kg CO2 eq/kg or kgCO2/km

Transportation Intensities per km

I Trip-level emissions from on i) distances ii) mode iii) mode-(vehicle-) specific
emission intensity

I Aggregated at individual level

Food Intensities per kg

I Product-level emissions based on volumes and product intensities Matching

I Aggregated at individual level
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23% Raw gender gap
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Figure: Individual CO2 emissions associated with daily food consumption and transport
use by gender

Note: Source: Averages calculated with survey weights.
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What can rationalize the gender emission gap?

Socio-demographics
I women could work part-time
I men could be richer

Volumes
I women commute shorter distances
I men should eat more

Intensities
I more red meat for men
I faster car for men
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Persists after controlling for socio-demographics
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Figure: Estimated gender gap in emissions, women-men
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Is it just a matter of scale?
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Intensities also explain the gap
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Linking the gender emission gap and support for climate policies

Given the gender emission gap, women should bear a lower burden of climate
policies

Does it translate into higher support?

Attitudinal survey data

I Barometer on social representations and climate change (ADEME)

I 7 waves of data (2016 and 2022)

I 10,145 individuals

I Socio-demographics are harmonized with other data sources
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Gap might be associated with stronger environmental concerns
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Figure: Gender gap in climate concerns
Note: Survey data from ADEME 2016-2022
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But does not imply systematic stronger support for climate policies
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Discussion

Large gender emission gap for food and transport

I 23% (20% after controlling for socio-demographics)

I Gender emission gap explained by differences in volumes and emission
intensities

Women show more climate concern

I But no stronger support for climate policies

I Next: Distribution of climate cost policies by gender Method Gap in Scanner data

- Demand reactions across products categories with heterogeneous intensities

- Preliminary results: little to no differences in elasticities on top polluting good
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APPENDIX
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Fuzzy Matching I

Aim: reduce the distance between text samples
Advantages over supervised ML: flexible matching, no need for training set

I Definition: natural language processing (NLP) algorithm projecting text (bags
of words) as vectors and computing distances between them.

I Decision criterion: maximization of the similarity between vectors
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Fuzzy Matching II

Choices:
I ”BERT” Language model applied to French Context: ’Camembert’
I Maximise cosine similarity between vectors

[ Disclaimer: no standard method was found in the literature, Galiana and
Suarez Castillo, 2022]

2 steps fuzzy matching with manual checks
1. Matching over product categories (to minimize error)
2. Matching over product (within each product category)
3. 2/3 of products have a score below 0.94 → replace by average emission

intensity in the product category
Back
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Emission intensities: Transport
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Figure: Emission intensity by transport category (averages)
Note: Emission intensity in gCO2/km.passenger. Difference in average car occupancy rates for short- vs

long-distance trips explain differences in intensities Back
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Emission intensities: Food
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Figure: Emission intensity by food category (averages)
Note: Emission intensity in kg CO2 eq/kg Back
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Calories

Figure: Calories Back
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Calories

Figure: Emissions per Calorie Back
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Test heterogeneity in reaction to prices change

Study demand reactions across products categories with heterogeneous intensities

I Structural demand model QAIDS model

I Model inter-categories relations Identification

→ Compare the estimated budget share elasticities for men and women

Requires data with variation in quantities and price information

I Use household-level scanner data Detail

I Available for food-at-home (for now)

I Focus on single-adults: robust gender emission gap Scanner: gender emission gap

Back
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Structural Estimation

Almost-ideal demand system model from Deaton and Muellbauer (1980)

Estimated in its quadratic version as developed by Banks et al. (1997)

sijt =
∑

j′
γjj′ lnPij′t +

2∑
r=1
βjr ln (Xit)

r +ΠZit + εijt
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Structural Estimation

sijt =
∑

j′
γjj′ lnPij′t +

2∑
r=1
βjr ln (Xit)

r +ΠZit + εijt

I household i, product category j, period t
I sijt expenditure share per product category
I Pijt Price per category
I Xit Total food expenses
I Zit Demand shifters

- Control variables: age, car ownership, education, household size.
- Regional x Period dummies.
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Structural Estimation

sijt =
∑

j′
γjj′ lnPij′t +

2∑
r=1
βjr ln (Xit)

r +ΠZit + εijt

→ γj are price effects, βjr capture income effects. Back
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Identification
’Observed’ Price endogeneity:

I Determinants of prices (quality & local shocks).

→ Leave one out prices per category at the living zone level: P−it,j

I Identifying assumptions:

- Within the living zone, at the food category level: retailers do not react
strategically to demand shocks.

- Measurement errors are independent across households within a living zone
conditional on the control variables.

Expenses endogeneity:

I Simultaneity between total food expenses & budget shares.

I IV: log-income per consumption unit (Banks et al., 1997). F-stat=82

Back
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Income distribution by household type

Variable Single-Adult Multi-Adults
Women Men

Income (€/month) 1815.92 (1017.82) 2092.13 (1256.84) 3209.09 (1966.55)
Income (€/month/cu) 1741.49 (982.12) 2066.78 (1264.41) 1813.20 (1167.94)

Table: Monthly Income and Income per Consumption Unit
Notes: SD in parenthesis, cu defined following the OECD-modified scale. Kantar 2017-2018.

Back
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Scanner Data

Kantar World Panel for France (2017-2018):

I Household-level data → focus on single-adult households

I Food-at-home

I 2k single-adult households (30%) Income by hh type

Back
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Estimation: budget share elasticities

Women Men
Estimated Budget share 0.054*** 0.060***

(0.001) (0.001)
Income elasticity 1.113*** 1.466***

(0.177) (0.165)
Uncompensated own price elasticity -1.062*** -0.956***

(0.081) (0.042)
Compensated own price elasticity -1.001*** -0.869***

(0.087) (0.046)

Table: Estimates for red meat for women and men.

Back
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Gender Emission Gap: Scanner data

Figure: Emission
Note: Emission intensity in kg CO2 eq Back
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