Mindset of policymakers matters: cases of climate coalition formation

Amin Mirabdollah KU Leuven Sareh Vosooghi KU Leuven

April 2024

Introduction

- Signatories of climate coalitions promise to reduce emissions jointly.
- Different climate coalitions have different levels of ambition in emission reduction.
- We model the formation of climate coalitions, and try to predict the number of coalitions and the number of signatories.
- Signatories commit to maximising payoffs of all coalition members in choosing their emission reduction levels.

- Our policymakers are **strategic** (or farsighted):
 - they predict the entire coalition structure
 - they take into account the consequences of their membership decisions on others
- Existing methodology of coalition formation by such strategic agents:
 - algorithms to find the number of coalitions and their signatories iteratively
 - in public-good games: small efficiency loss (Ray and Vohra, 2001, JPE)
 - for **univariate** payoff functions

- We generalise coalition formation with public goods to have **multivariate** payoff functions.
- An example is relaxing the fixed parameters that can capture the '**mindset of policymakers**' in climate negotiations.
- Two applications:
 - Dynamic games: climate coalition formation + Integrated Assessment Model (IAM)
 - \rightarrow we characterise equilibrium at each value of discount factor
 - Stochastic games: climate coalition formation + unknown decay rate of GHG → we characterise equilibrium at each value of uncertain decay rate of GHG

- We generalise coalition formation with public goods to have **multivariate** payoff functions.
- An example is relaxing the fixed parameters that can capture the '**mindset of policymakers**' in climate negotiations.
- Two applications:
 - Dynamic games: climate coalition formation + Integrated Assessment Model (IAM)
 - \rightarrow we characterise equilibrium at each value of discount factor
 - Stochastic games: climate coalition formation + unknown decay rate of GHG
 → we characterise equilibrium at each value of uncertain decay rate of GHG

- We offer an algorithm to **fully characterise** the equilibrium number of climate coalitions and their number of signatories for **multivariate** payoff functions.
- Our algorithm captures a larger set of equilibria, even for **univariate** payoff functions.
- **Policy** message from the applications:
 - ◊ discount factor (or time horizon) of policymakers affect their membership decisions!
 - beliefs of policymakers about uncertain parameters affect their membership decisions!

Thus, they should be taken into account in the design of climate treaties.

- We offer an algorithm to **fully characterise** the equilibrium number of climate coalitions and their number of signatories for **multivariate** payoff functions.
- Our algorithm captures a larger set of equilibria, even for **univariate** payoff functions.
- **Policy** message from the applications:
 - ◊ discount factor (or time horizon) of policymakers affect their membership decisions!
 - ◊ beliefs of policymakers about uncertain parameters affect their membership decisions!

Thus, they should be taken into account in the design of climate treaties.

- We offer an algorithm to **fully characterise** the equilibrium number of climate coalitions and their number of signatories for **multivariate** payoff functions.
- Our algorithm captures a larger set of equilibria, even for **univariate** payoff functions.
- **Policy** message from the applications:
 - discount factor (or time horizon) of policymakers affect their membership decisions!
 - beliefs of policymakers about uncertain parameters affect their membership decisions!

Thus, they should be taken into account in the design of climate treaties.

Introduction

Climate coalition formation + unknown decay rate of GHG

- Climate coalition formation
- The economy and climate
- Analysis of Action stage

Membership decisions

- Farsightedness Methodology
- Brute-force observations
- Algorithm

Conclusion

Setup

- Country $i \in I$, and set of countries is $I \equiv \{1, 2, ..., N\}$
- Time is discrete, *t* = 0, 1, 2, ...
- Each country has a planner, who represents it in climate negotiations and can implement desired outcomes in a decentralised economy
- Open membership + binding + irreversible agreements
- Let *n* be the number of active players in the negotiation room ($n \le N$).
- Symmetric countries

Timeline

Two-stage climate coalition formation

- Beginning of period t: membership stage
- From end of period t onward: action stage
 - \rightarrow coalitional decisions within coalitions (e.g., emission reduction)
 - \rightarrow country-level decisions (if any)
- At the end of each period actions are observed and payoffs are realised.

Membership stage

- **Coalition structure** is a partition of set *I* into coalitions, $\mathbb{M} \equiv \{M_1, M_2, ..., M_k\}$.
- *m_i* is number of signatories of *M_i*.
- Numerical coalition structure (substructure), $\mathcal{M} \equiv \{m_1, m_2, ..., m_k\}$.

Timeline

Two-stage climate coalition formation

- Beginning of period t: membership stage
- ◊ From end of period *t* onward: action stage
 - \rightarrow coalitional decisions within coalitions (e.g., emission reduction)
 - \rightarrow country-level decisions (if any)
- At the end of each period actions are observed and payoffs are realised.

Membership stage

- **Coalition structure** is a partition of set *I* into coalitions, $\mathbb{M} \equiv \{M_1, M_2, ..., M_k\}$.
- m_j is number of signatories of M_j .
- Numerical coalition structure (substructure), $\mathcal{M} \equiv \{m_1, m_2, ..., m_k\}$.

Introduction

Climate coalition formation + unknown decay rate of GHG

- Climate coalition formation
- The economy and climate
- Analysis of Action stage

Membership decisions

- Farsightedness Methodology
- Brute-force observations
- Algorithm

Conclusion

The economy and climate

q_{it}: abatement level

Qt: stock of GHG

 β : discount factor

 η : mSCC

 $1 - \phi$: (belief about) decay rate of GHG

 Ψ : unabated emission

Country *i* minimises

$$\sum_{ au=0}^\inftyeta^ au \Pi(q_{it+ au})$$
 where $\Pi_{it}=rac{q_{it}^2}{2}+\eta Q_t$

١

$$Q_{t+1} = \phi Q_t + \Psi - \sum_i q_{it}$$

Dutta and Radner (2006, 2009, 2012)

Introduction

Climate coalition formation + unknown decay rate of GHG

- Climate coalition formation
- The economy and climate
- Analysis of Action stage

Membership decisions

- Farsightedness Methodology
- Brute-force observations
- Algorithm

Conclusion

Solution concept

• Pure strategy Markov Perfect equilibrium

current state: the formed coalitions (if any); number of those negotiating (if any); proposal (if ongoing or signed); Q_t .

• Strategies of country *i*: as P and as R (in period zero); and action stage strategies: $\{q_{1it+\tau}(m, M)\}_{\tau=0}^{\infty}$

Action stage

The *m* member of coalition *M* minimise,

$$\sum_{i\in M}\sum_{\tau=0}^{\infty}\beta^t\{\Pi(q_{it+\tau})\}$$

subject to: climate dynamic constraint

Proposition

♦ Optimal abatement level of $i \in M$ is:

$$q_i(m) = rac{eta \eta m}{1 - eta \phi}$$

Abatement strategies are **dominant** against what other coalitions choose.

(

Introduction

Climate coalition formation + unknown decay rate of GHG

- Climate coalition formation
- The economy and climate
- Analysis of Action stage

Membership decisions

- Farsightedness Methodology
- Brute-force observations
- Algorithm

Conclusion

Backward induction to the membership stage

• **Optimum-value function** of $i \in M$ is $V_i(\phi, m, M)$

Value Function

Membership decision of **strategic** countries in the *equilibrium binding agreement* of Ray and Vohra (1999)

 \mathcal{M}^{\ast} is immune to unilateral and multilateral deviations by

- the deviating group, before signing any agreement,
- the active players in the negotiation room.

Farsightedness methodology

• **Ray and Vohra (1999)** The equilibrium \mathcal{M}^* needs to be found **iteratively**: checking iteratively for which group of countries, a grand coalition forms in equilibrium.

i.e. at stage *n* of the iteration process, there are *n* countries negotiating, if n = 2, then $\mathcal{M}^* =$? Then if n = 3, $\mathcal{M}^* =$? Then, if

- for example, if at n = 2, $M^* = \{2\}$, then at n = 3, compare payoff of $\{3\}$ v.s $\{2, 1\}$ (and $\{1, 1, 1\}$).
- Public-good games: Ray and Vohra (2001)
 1. In any stage of recursion, to check whether {m₁, m₂, ..., m_k} forms versus grand:

$$V_i(m_1, \mathcal{M}) - V_i(n)$$

2. The idea of **decomposition** of *n* using only \mathcal{M}^* of the previous stages

Farsightedness methodology

• **Ray and Vohra (1999)** The equilibrium \mathcal{M}^* needs to be found **iteratively**: checking iteratively for which group of countries, a grand coalition forms in equilibrium.

i.e. at stage *n* of the iteration process, there are *n* countries negotiating, if n = 2, then $\mathcal{M}^* =$? Then if n = 3, $\mathcal{M}^* =$? Then, if

• for example, if at n = 2, $M^* = \{2\}$, then at n = 3, compare payoff of $\{3\}$ v.s $\{2, 1\}$ (and $\{1, 1, 1\}$).

• Public-good games: Ray and Vohra (2001)

1. In any stage of recursion, to check whether $\{m_1, m_2, ..., m_k\}$ forms versus the grand:

$$V_i(m_1, \mathcal{M}) - V_i(n)$$

2. The idea of **decomposition** of *n* using only \mathcal{M}^* of the previous stages

Brute-force observations: n = 2

Brute-force observations: n = 3

Brute-force observations: n = 4

Observations from the brute-force approach

- ◇ **Observation 1**: for each n > 1, the equilibrium coalition structure depends on decay rate, ϕ .
- ♦ **Observation 2**: coalitions of equal size can emerge in equilibrium, e.g., $M^* = \{2, 2\}$ for n = 4 (even by collapsing ϕ).

Observations from the brute-force approach

- Observation 1: for each n > 1, the equilibrium coalition structure depends on decay rate, φ.
- ◇ **Observation 2**: coalitions of equal size can emerge in equilibrium, e.g., $M^* = \{2, 2\}$ for n = 4 (even by collapsing ϕ).

Introduction

Climate coalition formation + unknown decay rate of GHG

- Climate coalition formation
- The economy and climate
- Analysis of Action stage

Membership decisions

- Farsightedness Methodology
- Brute-force observations
- Algorithm

Conclusion

- ♦ As **N** increases, applying a brute-force approach (e.g. farsighted algorithms of Ray and Vohra, 1999) to check all possible payoffs across ϕ , can be tedious and computationally demanding.
- We need an approach to reduce the number of possibilities.
- ◇ The algorithm should rely on a iteration process too, but each step in the iteration process **depends on** ϕ .
- In a public-good game, the smallest coalitions have the highest payoffs. But we can't compare only the *decomposition* of *n* (from previous stages) with the grand's payoff, as coalition structures with **repeated elements** should be checked too.
- \diamond By dependence of payoffs on ϕ , multiplicity of equilibria can happen only at thresholds, where we break the ties in favour of the largest coalition. Otherwise, \mathcal{M}^* is **unique**.

- ♦ As **N** increases, applying a brute-force approach (e.g. farsighted algorithms of Ray and Vohra, 1999) to check all possible payoffs across ϕ , can be tedious and computationally demanding.
- We need an approach to reduce the number of possibilities.
- ◇ The algorithm should rely on a iteration process too, but each step in the iteration process **depends on** ϕ .
- ◇ In a public-good game, the smallest coalitions have the highest payoffs. But we can't compare only the *decomposition* of *n* (from previous stages) with the grand's payoff, as coalition structures with **repeated elements** should be checked too.
- ♦ By dependence of payoffs on ϕ , multiplicity of equilibria can happen only at thresholds, where we break the ties in favour of the largest coalition. Otherwise, \mathcal{M}^* is **unique**.

(I) For n = 1, $\mathcal{M}^* = \{1\}$ at any ϕ .

(II) at each stage n > 1 of the recursion,

- write down the family of all possible \mathcal{M} ,
- partition ϕ based on its thresholds at stage n - 1, and at each partition, eliminate all known unstable \mathcal{M} based on all previous rounds of recursion,
- among the remaining *M*, compare payoff of one country in the smallest (if any) coalition of each *M*, and find *M* with the maximum payoff.
- (III) stop at n = N.

(I) For n = 1, $\mathcal{M}^* = \{1\}$ at any ϕ .

(II) at each stage n > 1 of the recursion,

- write down the family of all possible \mathcal{M}_{i} ,
- partition ϕ based on its thresholds at stage n - 1, and at each partition, eliminate all known unstable \mathcal{M} based on all previous rounds of recursion,
- among the remaining *M*, compare payoff of one country in the smallest (if any) coalition of each *M*, and find *M* with the maximum payoff.

(III) stop at n = N.

(I) For n = 1, $\mathcal{M}^* = \{1\}$ at any ϕ .

(II) at each stage n > 1 of the recursion,

- write down the family of all possible \mathcal{M}_{i} ,
- partition ϕ based on its thresholds at stage n - 1, and at each partition, eliminate all known unstable \mathcal{M} based on all previous rounds of recursion,
- among the remaining *M*, compare payoff of one country in the smallest (if any) coalition of each *M*, and find *M* with the maximum payoff.

(III) stop at n = N.

- (I) For n = 1, $\mathcal{M}^* = \{1\}$ at any ϕ .
- (II) at each stage n > 1 of the recursion,
 - write down the family of all possible \mathcal{M} ,
 - partition ϕ based on its thresholds at stage n - 1, and at each partition, eliminate all known unstable \mathcal{M} based on all previous rounds of recursion,
 - among the remaining *M*, compare payoff of one country in the smallest (if any) coalition of each *M*, and find *M* with the maximum payoff.

(III) stop at n = N.

The application example (n = 4):

 $\begin{array}{ll} \{1,1,1,1\} or\{4\} or\{2,2\} & \mbox{if } 0.994 < \phi \\ \{3,1\} or\{4\} or\{2,2\} & \mbox{if } 0.989 < \phi \leq 0.994 \\ \{4\} or\{2,2\} & \mbox{if } \phi \leq 0.989 \end{array}$

- (I) For n = 1, $\mathcal{M}^* = \{1\}$ at any ϕ .
- (II) at each stage n > 1 of the recursion,
 - write down the family of all possible \mathcal{M}_{i} ,
 - partition ϕ based on its thresholds at stage n - 1, and at each partition, eliminate all known unstable \mathcal{M} based on all previous rounds of recursion,
 - among the remaining *M*, compare payoff of one country in the smallest (if any) coalition of each *M*, and find *M* with the maximum payoff.

(III) stop at n = N.

(I) For n = 1, $\mathcal{M}^* = \{1\}$ at any ϕ .

(II) at each stage n > 1 of the recursion,

- write down the family of all possible \mathcal{M}_{i} ,
- partition ϕ based on its thresholds at stage n - 1, and at each partition, eliminate all known unstable \mathcal{M} based on all previous rounds of recursion,
- among the remaining *M*, compare payoff of one country in the smallest (if any) coalition of each *M*, and find *M* with the maximum payoff.

(III) stop at n = N.

At stage *n* and at each partition,

(a) among all possible coalition structures, **eliminate** all unstable \mathcal{M} based on **all** previous rounds of recursion:

- from the previous stages, only $\{\mathcal{M}_{n-j}^*, j\}$ for $j < \frac{n}{2}, ...$, can be potentially self-enforceable.
- This reduces the number of checks.

For example, in the application: at n = 4 and $0.994 < \phi$, eliminate $\{3, 2\}$ and $\{3, 1, 1\}$, since at n = 3 and at that partition of ϕ , $\{3\}$ was not self-enforceable.

(b) In addition, we include coalition (sub)structures with **repeated elements**, in addition to the grand $\{n\}$.

At stage *n* and at each partition,

(a) among all possible coalition structures, **eliminate** all unstable \mathcal{M} based on **all** previous rounds of recursion:

- from the previous stages, only $\{\mathcal{M}_{n-j}^*, j\}$ for $j < \frac{n}{2}, ...$, can be potentially self-enforceable.
- This reduces the number of checks.

For example, in the application: at n = 4 and $0.994 < \phi$, eliminate $\{3, 2\}$ and $\{3, 1, 1\}$, since at n = 3 and at that partition of ϕ , $\{3\}$ was not self-enforceable.

(b) In addition, we include coalition (sub)structures with **repeated elements**, in addition to the grand $\{n\}$.

At stage *n* and at each partition,

(a) among all possible coalition structures, **eliminate** all unstable \mathcal{M} based on **all** previous rounds of recursion:

- from the previous stages, only $\{\mathcal{M}_{n-j}^*, j\}$ for $j < \frac{n}{2}, ...$, can be potentially self-enforceable.
- This reduces the number of checks.

For example, in the application: at n = 4 and $0.994 < \phi$, eliminate $\{3, 2\}$ and $\{3, 1, 1\}$, since at n = 3 and at that partition of ϕ , $\{3\}$ was not self-enforceable.

(b) In addition, we include coalition (sub)structures with **repeated elements**, in addition to the grand $\{n\}$.

At stage *n* and at each partition,

(a) among all possible coalition structures, **eliminate** all unstable \mathcal{M} based on **all** previous rounds of recursion:

- from the previous stages, only $\{\mathcal{M}_{n-j}^*, j\}$ for $j < \frac{n}{2}, ...$, can be potentially self-enforceable.
- This reduces the number of checks.

For example, in the application: at n = 4 and $0.994 < \phi$, eliminate $\{3, 2\}$ and $\{3, 1, 1\}$, since at n = 3 and at that partition of ϕ , $\{3\}$ was not self-enforceable.

(b) In addition, we include coalition (sub)structures with **repeated elements**, in addition to the grand $\{n\}$.

N = 40 and the application example:

If $\phi = 0.985$ then $\mathcal{M}^* = \{29, 8, 2, 1\}$

If $\phi = 0.995$ then $\mathcal{M}^* = \{20, 20\}$

 At higher natural decay rate of GHG (smaller φ), the countries form larger coalitions in equilibrium.

Introduction

Climate coalition formation + unknown decay rate of GHG

- Climate coalition formation
- The economy and climate
- Analysis of Action stage

Membership decisions

- Farsightedness Methodology
- Brute-force observations
- Algorithm

Conclusion

Conclusion

- The design of an architecture for climate treaties should depend on parameters of underlying models, e.g. those related to the policymakers mindset: their discount factor or their belief about decay rate of GHG, etc.
- We generalise coalition formation game with public goods to multivariate payoff functions.
- ◊ We offer an algorithm to fully characterise *M** in coalition formation of climate games by *strategic* agents.
 - Unique prediction of equilibrium climate coalitions
 - Characterising broader set of equilibrium outcomes