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Introduction

o Signatories of climate coalitions promise to reduce emissions jointly.

o Different climate coalitions have different levels of ambition in emission
reduction.

o We model the formation of climate coalitions, and try to predict the number of
coalitions and the number of signatories.

o Signatories commit to maximising payoffs of all coalition members in
choosing their emission reduction levels.
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o Our policymakers are strategic (or farsighted):

e they predict the entire coalition structure
e they take into account the consequences of their membership decisions on others

o Existing methodology of coalition formation by such strategic agents:

¢ algorithms to find the number of coalitions and their signatories iteratively
® in public-good games: small efficiency loss (Ray and Vohra, 2001, JPE)
¢ for univariate payoff functions
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Contribution

o We generalise coalition formation with public goods to have multivariate
payoff functions.

o An example is relaxing the fixed parameters that can capture the ‘mindset of
policymakers’ in climate negotiations.
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Contribution

o We generalise coalition formation with public goods to have multivariate
payoff functions.

o An example is relaxing the fixed parameters that can capture the ‘mindset of
policymakers’ in climate negotiations.

o Two applications:

o Dynamic games: climate coalition formation + Integrated Assessment Model
(IAM)
— we characterise equilibrium at each value of discount factor

o Stochastic games: climate coalition formation + unknown decay rate of GHG
— we characterise equilibrium at each value of uncertain decay rate of GHG
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Contribution

o We offer an algorithm to fully characterise the equilibrium number of climate
coalitions and their number of signatories for multivariate payoff functions.
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Contribution

o We offer an algorithm to fully characterise the equilibrium number of climate
coalitions and their number of signatories for multivariate payoff functions.

o Our algorithm captures a larger set of equilibria, even for univariate payoff
functions.
o Policy message from the applications:

o discount factor (or time horizon) of policymakers affect their membership
decisions!

¢ beliefs of policymakers about uncertain parameters affect their membership
decisions!

Thus, they should be taken into account in the design of climate treaties.
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Climate coalition formation + unknown decay rate of GHG
@ Climate coalition formation
@ The economy and climate
@ Analysis of Action stage



Setup

o}

Country i € I, and set of countriesis I = {1,2,...,N}

Timeis discrete, t = 0,1, 2, ...

e}

O

Each country has a planner, who represents it in climate negotiations and can
implement desired outcomes in a decentralised economy

O

Open membership + binding + irreversible agreements

O

Let n be the number of active players in the negotiation room (n < N).

O

Symmetric countries
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Timeline

Two-stage climate coalition formation

o Beginning of period t: membership stage

o From end of period t onward: action stage
—s coalitional decisions within coalitions (e.g., emission reduction)
— country-level decisions (if any)

o At the end of each period actions are observed and payoffs are realised.
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Timeline

Two-stage climate coalition formation

o Beginning of period t: membership stage

o From end of period t onward: action stage
—s coalitional decisions within coalitions (e.g., emission reduction)
— country-level decisions (if any)

o At the end of each period actions are observed and payoffs are realised.
Membership stage
o Coalition structure is a partition of set I into coalitions, Ml = {M;, Mo, ..., M, }.

o mj is number of signatories of M;.
o Numerical coalition structure (substructure), M = {mq,m,, ..., m}.
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Climate coalition formation + unknown decay rate of GHG
@ Climate coalition formation
@ The economy and climate
@ Analysis of Action stage



The economy and climate

Country i minimises
gjt: abatement level >
> B N(Gitsr)
Qr: stock of GHG =0
g
3: discount factor where My = 3 + nQt
n: MSCC
1— ¢: (belief about ) — v — .
decay rate of GHG Qeir = 9Qe+ Z el
]
WV: unabated emission

Dutta and Radner (2006, 2009, 2012)
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Climate coalition formation + unknown decay rate of GHG
@ Climate coalition formation
@ The economy and climate
@ Analysis of Action stage



Solution concept

o Pure strategy Markov Perfect equilibrium

current state: the formed coalitions (if any); number of those negotiating (if any);
proposal (if ongoing or signed); Q.

o Strategies of country i: as P and as R (in period zero); and action stage
strategies: {qjt4-(m, M)},
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Action stage

The m member of coalition M minimise,

DY 84{N(@Gier)}

ieM =0
subject to: climate dynamic constraint

Proposition
¢ Optimal abatement level of i € M is:

_ _fBnm
1- B¢

qi(m)

o Abatement strategies are dominant against what other coalitions choose.
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Membership decisions
@ Farsightedness Methodology
@ Brute-force observations
@ Algorithm



Backward induction to the membership stage

o Optimum-value function of i € M is Vj(¢, m, M)
Membership decision of strategic countries in the equilibrium binding
agreement of Ray and Vohra (1999)

M* isimmune to unilateral and multilateral deviations by

< the deviating group, before signing any agreement,

o the active players in the negotiation room.
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Farsightedness methodology

o Ray and Vohra (1999) The equilibrium M* needs to be found iteratively:
checking iteratively for which group of countries, a grand coalition forms in
equilibrium.

i.e. at stage n of the iteration process, there are n countries negotiating,
ifn =2, then M* =?Thenifn =3, M* =? Then, if ... .

e for example, if at n = 2, M* = {2}, then at n = 3, compare payoff of {3} v.s {2,1}
(and {1.%1).
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Farsightedness methodology

o Ray and Vohra (1999) The equilibrium M* needs to be found iteratively:
checking iteratively for which group of countries, a grand coalition forms in
equilibrium.

i.e. at stage n of the iteration process, there are n countries negotiating,
ifn =2, then M* =?Thenifn =3, M* =? Then, if ... .

e for example, if at n = 2, M* = {2}, then at n = 3, compare payoff of {3} v.s {2,1}
(and {1.%1).

o Public-good games: Ray and Vohra (2001)
1. In any stage of recursion, to check whether {mq,m,, ..., m;} forms versus the
grand:

Vi(mi, M) — Vj(n)
2. The idea of decomposition of n using only M* of the previous stages
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Brute-force observations: n = 2
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Brute-force observations: n = 3
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Brute-force observations: n = 4
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Observations from the brute-force approach

© Observation 1: for each n > 1, the equilibrium coalition structure depends on
decay rate, ¢.
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Observations from the brute-force approach

© Observation 1: for each n > 1, the equilibrium coalition structure depends on
decay rate, ¢.

< Observation 2: coalitions of equal size can emerge in equilibrium, e.g.,
M* ={2,2} forn = 4 (even by collapsing ¢).
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Membership decisions
@ Farsightedness Methodology
@ Brute-force observations
@ Algorithm



Algorithm

o As N increases, applying a brute-force approach (e.g. farsighted algorithms of
Ray and Vohra, 1999) to check all possible payoffs across ¢, can be tedious and
computationally demanding.

o We need an approach to reduce the number of possibilities.

o The algorithm should rely on a iteration process too, but each step in the
iteration process depends on ¢.
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Algorithm

O

As N increases, applying a brute-force approach (e.g. farsighted algorithms of
Ray and Vohra, 1999) to check all possible payoffs across ¢, can be tedious and
computationally demanding.

We need an approach to reduce the number of possibilities.

The algorithm should rely on a iteration process too, but each step in the
iteration process depends on ¢.

In a public-good game, the smallest coalitions have the highest payoffs. But we
can't compare only the decomposition of n (from previous stages) with the
grand'’s payoff, as coalition structures with repeated elements should be
checked too.

By dependence of payoffs on ¢, multiplicity of equilibria can happen only at
thresholds, where we break the ties in favour of the largest coalition. Otherwise,
M* is unique.
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Algorithm

(I) Forn =1, M* = {1} atany ¢.
(II) at each stage n > 1 of the recursion,

* write down the family of all possible
M,

The application example (n = 4):
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Algorithm

(I) Forn =1, M* = {1} atany ¢.
(II) at each stage n > 1 of the recursion,

* write down the family of all possible
M,

The application example (n = 4):

F = { {4}7{371}7{27171}7{1717171} }
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Algorithm

(I) Forn =1 M* = {1} atany ¢.
(II) at each stage n > 1 of the recursion,
* write down the family of all possible
M,
® partition ¢ based on its thresholds
at stage n — 1, and at each partition,
eliminate all known unstable M

based on all previous rounds of
recursion,

The application example (n = 4):
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Algorithm

(I) Forn =1 M* = {1} atany ¢.
(II) at each stage n > 1 of the recursion,
¢ write down the family of all possible
M,
e partition ¢ based on its thresholds
at stage n — 1, and at each partition,
eliminate all known unstable M

based on all previous rounds of
recursion,

The application example (n = 4):

{4} M¥={3,1}

{1,1,1,1}or{4}or{2,2} if0.994 < ¢
{3,1}or{4}or{2,2} if 0.989 < ¢ < 0.994
{4}or{2,2} if < 0.989
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Algorithm

() Forn =1, M* = {1} atany ¢. The application example (n = 4):
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Algorithm

(I) Forn =1, M* = {1} atany ¢.
(II) at each stage n > 1 of the recursion,

* write down the family of all possible
M,

® partition ¢ based on its thresholds
at stage n — 1, and at each partition,
eliminate all known unstable M
based on all previous rounds of
recursion,

® among the remaining M, compare
payoff of one country in the
smallest (if any) coalition of each
M, and find M with the maximum
payoff.

(Il) stopatn=N.

The application example (n = 4):
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More on the elimination step
At stage n and at each partition,

(a) among all possible coalition structures, eliminate all unstable M based on
all previous rounds of recursion:

* from the previous stages, only {M; ;.j} forj < 3, ..., can be potentially
self-enforceable.
® This reduces the number of checks.
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More on the elimination step
At stage n and at each partition,

(a) among all possible coalition structures, eliminate all unstable M based on
all previous rounds of recursion:

* from the previous stages, only {M; ;.j} forj < 3, ..., can be potentially
self-enforceable.
® This reduces the number of checks.

For example, in the application: at n = 4 and 0.994 < ¢, eliminate {3,2} and
{3,1,1}, since at n = 3 and at that partition of ¢, {3} was not self-enforceable.

(b) In addition, we include coalition (sub)structures with repeated elements, in
addition to the grand {n}.

For example, in the application example, at n = 4, the new possible structures
are {2,2} and {4}.

18/20



N = 40 and the application example:

If ¢ = 0.985 then M* = {29,8,2,1}

If ¢ = 0.995 then M* = {20,20}

e At higher natural decay rate of GHG (smaller ¢), the countries form larger
coalitions in equilibrium.
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Conclusion

o The design of an architecture for climate treaties should depend on parameters
of underlying models, e.g. those related to the policymakers mindset: their
discount factor or their belief about decay rate of GHG, etc.

o We generalise coalition formation game with public goods to multivariate
payoff functions.

o We offer an algorithm to fully characterise M* in coalition formation of climate
games by strategic agents.

o Unique prediction of equilibrium climate coalitions

© Characterising broader set of equilibrium outcomes
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