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Abstract

Using establishment-level data, we show that firms operating in multiple counties in the
United States respond to heat-related damages by reallocating employment towards un-
affected locations. Such employment reallocation increases with the severity of damages,
is stronger among larger and financially stable firms with more ESG-oriented investors,
and is aided by credit availability and competitive labor markets. Reallocation is ob-
served also at the extensive margin of opening of establishments. In the cross-section
of industries and the choice of reallocation counties, firm response appears to be aimed
at preventing heat-related decline in productivity. In contrast, single-location firms
simply downsize in response to heat-related damages. Overall, the mitigation response
of multi-establishment firms acts as a “heat insulator” for the economy by reducing
the impact of heat shocks on aggregate employment even as it redistributes activity
spatially.
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I Introduction

“Heat stress is projected to reduce total working hours worldwide by 2.2 per cent

and global GDP by US$2,400 billion in 2030. For workers and businesses to be

able to cope with heat stress, appropriate policies, technological investments and be-

havioural change are required.” – International Labor Organization Report (2019)

Climate-related disasters are expected by many scientists to become increasingly frequent

in the coming decades. Among the various facets of climate change, heat-related hazards are

the leading cause of deaths in the U.S. and account for the majority of projected damages due

to climate change (Vaidyanathan et al., 2020; Hsiang et al., 2017).1 Besides raising energy

expenditures, extreme heat conditions can adversely affect firms by lowering labor productiv-

ity, which directly affects their profitability, and exposing workers to injuries and fatalities,

which can have indirect consequences due to the growing pressure on firms from employees

and investors to meet sustainable business standards. Historically, economies adapted to, and

in turn mitigated the impact of such heat shocks on employment and economic activity by

undertaking migration via inter-regional trade or informal diversification mechanisms (see,

e.g., Giné et al., 2012 and Baez et al., 2017).

In this paper, we investigate whether modern corporations that organize employment

across multiple establishments effectively act as “heat insulators” for the economy. In partic-

ular, we ask whether multi-establishment firms mitigate heat exposure by reorganizing em-

ployment and production spatially, what factors aid or impede such a response, and whether

such a response leads to a spatial redistribution of economic activity. Understanding such

mitigation by firms is also important because heat risk is not explicitly covered under the

1988 Stafford Act governing FEMA Aid policy and in part due to the practical difficulties

in developing private insurance market for heat stress (CLEE, 2020). However, assessing the

total expected scope of firms’ mitigation strategies and their economic consequences has been

challenging (Hinkel et al., 2014).

We tackle these questions by using establishment-level data from Dun & Bradstreet Global

Archive Files (D&B) and disaster information from the Spatial Hazard Events and Losses

Database for the United States (SHELDUS) over the period from 2009 to 2020. We motivate

our analysis by first showing that multi-location firms are more resilient to heat shocks than

single-location firms, as single-location firms generally reduce employment in the locations

1According to the Spatial Hazard Events and Losses Database for the United States (SHELDUS), there
were 5,702 fatalities associated with heat-related disasters between 1960 and 2020. The second highest
number of fatalities were due to Hurricane/Storm, which caused 1,847 deaths during the same period.
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affected by a heat shock. Interestingly, the reduction of single-location employment is associ-

ated with an increase in their job postings, suggesting that the reduction is more likely to be

driven by a labor supply rather than a demand shock. For multi-location firms, we find an

increase in employment and job postings at their unaffected establishments, suggesting that

these firms mitigate heat exposure by reorganizing employment and production spatially. In

the cross-section of multi-location firms, workforce reallocation is more pronounced among

firms that are larger, less leveraged, and held by more climate-concerned investors. In time-

series, we find that firm-led mitigation is becoming stronger in response to the intensifying

and evolving nature of heat disasters.

Firm-level labor flows affect aggregate employment growth at the county level. We show

that heat shocks result in modest and temporary decline in employment growth in the af-

fected counties. Importantly, the spatial reallocation by multi-location firms results in higher

employment growth in counties that are less directly exposed to heat risk themselves, but

that are connected to the heat-affected areas via firm networks. We also examine whether

these county-level patterns are driven by locals or by migrants workers from other counties.

We find that the negative impact in the heat-affected counties and the positive spillover effect

on the unaffected ones is both driven by employment changes in the local population. Our

muted results on migration are in line with Behrer and Bolotnyy, 2023, who study migration

in response to other types of natural disasters. These results indicate that firms’ ability

to reallocate their workforce geographically lowers the long-run economic impact of climate

change, especially via the spatial redistribution channel.

Turning to the specifics of such firm-level mitigation of heat risk, having a diversified

geographical presence benefits the firms in two ways. First, it lowers the chances of all

their sites facing a heat wave at once which, in turn, enables then to provide more stable

employment opportunities to their workers. Second, it enables them to reallocate workforce

across regions with varying exposure to climate shocks. To show that multi-location firms

fare better in response to heat shocks, we create establishment-level heat exposure measure

as the log of “hot days” in its county, where a hot day is defined as a day experiencing loss

(property, crop, injury, or fatality) due to heat hazard according to the SHELDUS database.

We find that while establishments of single-location firms experience a decline in employment

following heat exposure, those of multi-location firms suffer disproportionately less and even

gain workers in the long run. For example, we find that while one hot day lowers employment

growth of single-location firms by 1.04 pp over three years, multi-location firms experience

no such decline. We also study how geographical diversification interacts with firm size, and

find that while small firms generally downsize exhibiting lower labor demand, single location

firms experience employee exodus irrespective of their size.
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Next, we provide evidence of across-county employment reallocation in multi-location

firms in response to heat shocks following an approach similar to Giroud and Mueller, 2019.

Specifically, we calculate a “peer shock” measure for each establishment as the total number

of hot days (scaled by their relative employment) that its sister establishments (i.e., those of

the same firm) experienced in a given year. Our empirical strategy then compares the em-

ployment growth in two establishments in the same county-year that are exposed to different

shocks in other regions due to differences in firms’ establishment networks. This specifica-

tion allows us to control for any time-varying local economic shocks that may affect local

employment growth. We find that a 1% increase in peer shock measure is associated with a

1% increase in establishments’ employment growth over three years. To gauge the economic

magnitude of these results, consider a firm with two equal-sized establishments in separate

counties. Our results suggest that a hot day in one location is associated with a 0.7% increase

in employment growth in the other establishment. In supplementary analysis, we also find

that the probability of the aforementioned firm to enter a new location increases by 0.07 pp,

and this response in stronger in new locations that are less exposed to heat stress. These

results suggests that firms respond to heat shocks by reallocating resources from affected

areas to less affected ones.

Firms may need significant resources to reorganize their geographical presence and hedge

climate risk, as it requires expanding production capacity and training new staff at unaf-

fected locations. However, with costly external financing, firms may face a tradeoff between

spending on climate risk management and thereby building resiliency versus maintaining cash

buffers to avoid financial distress (See, e.g., Acharya et al., 2021). This implies that finan-

cially constrained firms might struggle in pursuing the spatial mitigation strategy. Indeed,

we find stronger response among larger, profitable firms with lower leverage and credit risk.

These results indicate that while employment reallocation can dampen the adverse impact of

heat shocks on aggregate employment, the associated costs are borne by firms. We also find

that employment reallocation is higher when investors are ESG-affiliated (Cohen et al., 2020)

and perceive greater climate risk, as measured by earnings call transcripts (Sautner et al.,

2023). These findings suggest that environment-oriented investors concerned about climate

risk can help firms in combating climate change whereas financial constraints impede such a

response.2

The direction of firm reallocation also sheds light on how heat shocks affect the firms.

Extreme heat conditions can ramp up energy costs and lower firm cash flows at affected lo-

2Asset managers are increasingly incorporating physical climate risk in their investment decisions. See
Bloomberg article dated October 22, 2023 (link). Thus, lowering exposure to extreme climate events by
relocating their workforce can lower firms’ cost of capital in the long run.
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cations. Since resources are optimally allocated across locations, a negative cash flow shock

will require financially constrained firms to cut jobs across all their locations leading to a neg-

ative spillover effect (Giroud and Mueller, 2019). In contrast, heat shocks can cause positive

spillover across establishments if they depress local labor productivity by causing discom-

fort and absenteeism among workers (Somanathan et al., 2021). This is because a negative

productivity shock lowers optimal employment levels and frees up resources that financially

constrained firms can deploy elsewhere. Our results on employment reallocation are consis-

tent with the second channel, i.e., with the role of productivity shocks. To verify this idea,

we explore heterogeneity across industry groups and find that industries where workers have

significant outdoor exposure, e.g., mining and construction, exhibit the maximum amount of

mitigation in our sample. We also find that industries most amenable to teleworking exhibit

weaker mitigation activity. Collectively, our results suggest that the firms are relocating to

minimize heat-related losses in labor productivity.

Finally, understanding local factors that aid firm mitigation can help policymakers combat

climate change more effectively. Therefore, we examine which counties are most appealing

for firms looking to relocate their workforce in the wake of heat shocks. First, we find that

consistent with firms mitigating their future climate change exposure, employment growth

is stronger in unaffected counties with lower projected heat-related damage, as measured by

estimates of Spatial Empirical Adaptive Global-to-Local Assessment System (SEAGLAS) by

Hsiang et al., 2017. Turning to economic factors, higher GDP growth and credit availability

(as measured by per-capita bank loan originations) increase mitigation-driven employment

growth. Finally, labor market competition, measured by lower employment concentration

across firms (employment HHI) and weaker enforcement of non-compete agreements, also

supports firms’ response. From a policy perspective, these results underline that enhancing

credit access and fostering a competitive labor market can not only help local economies

attract companies but also help policymakers leverage the support of the corporate sector in

minimizing the adverse consequences of rising temperatures.

We next evaluate employment reallocation as a long-term mitigation strategy against

the evolving nature of heat shocks. Heat waves are becoming longer and more acute over

time.3 They are also increasingly compounded by other natural disasters like hurricanes

and wildfires (Raymond et al., 2022). Relatedly, communities experiencing chronic heat

conditions historically may have responded on their own reducing the need for firms to step

in. If firms’ response is stronger against acute heat shocks and compound climate episodes in

areas under chronic stress, then firm-driven mitigation will become more useful over time.4

3See Environmental Protection Agency report dated July 2022 (link).
4We define heat shocks as acute if they are accompanied by a non-zero property damage. Compound
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On the other hand, if mitigation works best for milder events or if local communities are

acclimatized to chronic heat conditions, the usefulness of firms’ spatial mitigation channel

would be limited in the long run. We find that mitigation response is higher after more

acute heat hazards – those causing non-zero property damage, and when heat shocks are

accompanied by other disasters. Firms also respond more strongly against heat shocks in

chronically affected counties defined as those with higher historical incidences of heat shocks.

These results underscore the importance of firm-driven climate mitigation policies for their

long-term productivity.

While the Dun & Bradstreet data has several advantages in terms of its granularity and

easy accessibility, it also has certain limitations relative to the Administrative Census data

(Crane and Decker, 2020). We take several steps to ensure that those limitations do not

impact the validity of our empirical results. The first issue is with the inaccurate coverage

of very small firms. Since our focus is on large multi-location firms, we drop all companies

employing fewer than 100 employees in our sample. The second issue is related to the

imputation of employment numbers likely causing low volatility in employment. To address

this issue, we drop all imputed data points and consider only actually reported values in our

analysis. Third, we look at long-term employment changes over a six-year horizon which

limits the concerns with small year-over-year changes. Finally, we substitute employment

growth with the change in the number of firms’ active establishments as the (extensive

margin) outcome variable throughout our analysis and find consistent results. We run several

additional tests to confirm the robustness of our baseline results on within-firm reallocation.

We use alternative ways to define peer shocks at the establishment level, using alternative

weighting schemes and threshold-temperature-based measures of hot days. Additionally,

while our baseline specification uses firm and county-year fixed effects, we augment it with

firm-year and county-industry-year fixed effects to further ensure that our results are driven

by within-firm reallocation across affected and unaffected establishments.

Related Literature Our paper is related to several recent papers studying the effects of

extreme weather events on firm performance. Extreme heat can adversely impact local em-

ployment, revenue, and aggregate economic growth (Addoum et al., 2020; Jin et al., 2021;

Dell et al., 2012). However, Addoum et al., 2023 finds that this average masks a bi-directional

effect, where some industries are harmed while others benefit. Heat shocks also impact firms’

financial performance (Pankratz et al., 2023) but there is some evidence that hotter regions

climate episodes are defined as heat shocks occurring concurrently with another type of natural disaster like
hurricane, wildfires, etc. Finally, counties under chronic stress are defined as those with the average annual
number of hot days over the 1960-2008 time period exceeding the median value.
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are more resilient to subsequent heat shocks (Behrer and Park, 2017). Other papers show

that temperature shocks significantly increase energy costs and lower productivity of man-

ufacturing plants, with the effect mainly concentrated on smaller establishments (Ponticelli

et al., 2023). Extreme temperatures can also depress labor productivity by causing fatigue,

exhaustion, and absenteeism among workers (Graff Zivin and Neidell, 2014; Somanathan

et al., 2021; Baumgartner et al., 2023).

A smaller literature has studied how firms respond to climate change-related shocks.

Pankratz and Schiller, 2021 shows that firms are more likely to terminate existing sup-

plier relationships when realized temperature shocks exceed expectations. Lin et al., 2020

shows that power plants increase investments in flexible production technologies in response

to long-term climate change and Castro-Vincenzi, 2023 shows that car manufacturers move

their production sites away from flood-affected regions. Bartram et al., 2022 documents that

firms respond to local carbon regulation by shifting production to unaffected states. We con-

tribute to this literature by showing that in addition to regulatory shocks, firms also respond

to shocks related to physical climate risk by shifting their employment to less affected areas.

Finally, our paper relates to the literature on firms’ establishment networks. Such networks

can propagate economic shock across distant regions (Giroud and Mueller, 2015, 2019) and

generate aggregate fluctuations in the economy (Gabaix, 2011). Multiple establishments

within a firm compete for valuable resources, leading to codependency in organizational

structure across those establishments (Gumpert et al., 2022). Multi-region firms can have

functioning internal labor markets and can efficiently deploy workers across regions (Tate and

Yang, 2015). We document positive spillover effects of climate shocks due to firms’ internal

employment reallocation decisions, that are consistent with this literature.

II Data

A Dun & Bradstreet (D&B)

Establishment-level data for our study comes from the Global Linkage file in the D&B His-

torical Global Archive database. D&B gathers data from firms as well as other sources and

distributes it for purposes such as marketing and credit scoring.5 D&B sources data from var-

ious sources including state secretaries, Yellow Pages, court documents, and credit inquiries,

5While businesses aren’t legally required to contribute or provide accurate information, D&B is driven by
profitability motives to ensure data accuracy. Moreover, the credibility of individual businesses in terms of
credit and other partnerships might hinge on the precision of the data they submit.
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in addition to direct telephone outreach to businesses. Every establishment is allocated a

distinct dunsnumber that remains constant, even if the business relocates or undergoes an

acquisition.

These files contain detailed information on the location and number of employees working

at the establishment level. They also consist of international business records that con-

tain ownership relationships linking them together in a family tree structure. The database

contains a global-ultimate-duns-number for every establishment, which we use as the firm

identifier. For our analysis, we focus on establishments located in the United States. Our

sample ranges from 2009 to 2020. Table 1 presents the summary statistics of key variables

used in our analysis. The median firm in our sample employs 20 employees and has one

establishment in a given county.

Concerns regarding D&B data Numerous recent studies have used D&B database and

its derivative National Establishment Time Series (NETS) to study employment growth in the

United States (Denes et al., 2020; Farre-Mensa et al., 2020; Borisov et al., 2021). D&B data

is free of survivorship-bias. Another key advantage of the data is that, unlike the comparable

Census Longitudinal Business Database (LBD) data, it does not require a long and tedious

approval process before the researchers can access the data. Due to easier access, analysis

using the publicly available D&B data is accessible to the broader community in addition to

those having access to the restricted Census datasets (Addoum et al., 2023). However, there

are important differences between the D&B data and the Census LBD data as outlined by

Crane and Decker, 2020. Most importantly, there are concerns regarding imputation of data

and coverage of small firms. We address these and other concerns in several ways.

The first concern relates to the large amount of imputation in establishment-level variables

like sales and employment. Following Denes et al., 2020, we only use actual, nonimputed

values of employment and employment growth in our analysis. We do not use sales data since

a vast majority of those observations are imputed. A related issue is the low volatility of the

employment data at the annual frequency. To address this concern, we use both short-term

(1 year) and long-term (upto 6 years) employment changes throughout our empirical analysis

and show that all our results hold beyond the short period suffering from stickiness in the

data.

The second concern is about the coverage of small firms. Barnatchez et al., 2017 discuss

that D&B has too many establishments with 10 or fewer employees. We remove all firms

that employed fewer than 100 employees on average over our sample period to address this

issue. The employment share of excluded firms is tiny. Furthermore, since we focus on
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the mitigation activity of multi-establishment firms, the exclusion of very small firms which

usually operate in a single location has a trivial impact on our main analysis.6 Thus, our

sample is slightly skewed towards larger firms in the economy. This exclusion addresses

the coverage issue since the correlation between D&B and Census for such large firms is

very high. Removing small firms also helps with the imputation problem since the extent

of imputation is very low from larger firms and we do not lose a lot of data by removing

imputed observations for such firms. Another associated issue is related to the coverage in

agriculture, mining, and construction industry. We show that our results hold separately

across each industry group and are not driven by these specific industries.

To further address potential concerns with the employment data, we use alternative vari-

ables to quantify firms’ reallocation activity. Specifically, we use the fact that, barring small

firms, the D&B data is representative of the U.S. business activity in the cross-section. Thus,

we use the number of establishments with non-zero value of actual employment as our alter-

native outcome variable. The error in identifying the presence of an establishment is likely

to be lower relative to that in recording its current employment. We show that all our re-

sults on employment growth at the firm-county level (intensive margin) are consistent with

those using change in the number of active establishments (extensive margin) as the outcome

variable.

B Lightcast

Our job postings data comes from Lightcast (previously Burning Glass). These data are

collected daily from over 65,000 websites, such as national and local job boards, job posting

aggregators, and company career sites. The company then applies a deduplication process for

collected postings, with over 80% of all postings being deduplicated. For each posting in the

database, we know the posting firm and time, as well as the post location and occupation.

We first aggregate these postings to firm-county-year-level, and then match to D&B data

based on name, county, and 2-digit SIC industry code of the establishment.

In some analyses, we further classify posts based on their exposure to extreme temperatures

based on O*NET Work Context database. This database contains exposure scores for almost

900 different occupations based on how often the job requires working in very hot (above

90F degrees) or very cold (below 32F degrees) temperatures. We use 50/100 score cutoff to

define an exposed occupation, which covers around 28% of all occupations.

6Excluding firms employing fewer than 100 employees also removes non-employer firms which are omitted
from the Census datasets (Neumark et al., 2007).
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Finally, we scale the postings based on lagged number of employees in a given firm-county

using the D&B employment data. As shown in Table 1, the number of vacancies that an

average establishment advertises in a given year is around 7% of its previous year’s number of

employees, with these figures being 1.8% and 5.1% for exposed and non-exposed occupations,

respectively.

C Heat-related disasters

We obtain county-level data on disasters from the Spatial Hazard Events and Losses Database

for the United States (SHELDUS). The database contains information on the date and du-

ration of an event, the affected location (county and state), and the direct losses caused by

the event (property and crop losses, injuries, and fatalities) from 1960 to the present. Sev-

eral other papers have used this data to measure extreme heat events (e.g. Alekseev et al.,

2022). We aggregate the data at the county-year level and our primary variable of interest

(# Hot Daysc,t) is defined as the total number of days when heat-related hazards affected

a county c in a given year t. Figure 1 shows US counties that experienced one or more

hot days throughout our sample period (2009 to 2020) and suggests that heat shocks are

geographically dispersed across the United States.

C.1 Relationship with temperature-based heat shocks

Besides the SHELDUS measure, previous literature has used daily temperature data and

defined “hot days” as days when the temperature exceeded long-term historical averages or

specific threshold levels (e.g., 90F or 100F) (e.g. Addoum et al., 2020). We use the SHELDUS

data because of two reasons. First, it records events that caused significant damage to the

locality. In contrast, short-term spikes in daily temperatures may not be salient enough to

impact firms’ location choices. Secondly, leveraging information on property damages allows

us to categorize events based on severity, enabling analysis of firm responses to mild and

acute events separately.

We examine the relationship between the number of hot days as defined by SHELDUS

and those defined as the number of days when the daily average temperature exceeded the

99th percentile value for a given county between 1982 to 2020 (i.e., the period for which

PRISM data on daily temperatures at the county level is available). Table 2 shows that,

perhaps unsurprisingly, the number of SHELDUS hot days is positively associated with the

number of temperature-based hot days measure. Interestingly, we find that this relationship

is stronger in counties with higher community risk factor (as defined by the FEMA Risk

10



Index data), which is consistent with the idea that higher temperatures are more damaging

in areas that are more vulnerable to climate risk. We use the temperature-based number of

hot days measure in our robustness tests and obtain results consistent with those using our

main measure.

III Establishment-level results

A Impact of heat shocks: Single vs. multi-location firms

Extreme heat events and the resulting damages to firms are often localized. Therefore, the

menu of locations available to the firms offers a credible mitigation strategy (Kahn, 2014). Put

simply, firms can shift from disaster-prone areas to safer ones. While moving into new areas

might be costly, firms that already operate some establishments in safer locations can just

hire more employees there. This spatial mitigation strategy is the central focus of our paper.

A direct inference of this is that firms operating in multiple locations would be more resilient

to heat shocks. Thus, we start our analysis by contrasting the total employment growth at

single and multi-location firms after facing similar exposure to heat-related disasters.

To study how heat shocks affect employment across firms, we estimate the following spec-

ification:

∆Log(Employment)f,c,t−1→t+k = γk ×Own Shockc,t × Single Locationf (1)

+ δk ×Own Shockc,t + αf + αc + αt + εf,c,t.

Here, ∆Log(Employment)f,c,t−1→t+k is the change in firm f ’s log employment in count c from

year t to t+ k. Own Shockc,t is Log(1 + Hot Daysc,t), where Hot Daysc,t is the total number

of hot days in count c in year t according to SHELDUS. Single Locationf indicates that firm

f existed in a single county throughout our sample period. We employ firm and county

fixed-effects to absorb differences in growth rates across firms and counties. We also include

year fixed-effects to absorb aggregate fluctuations and cluster standard errors at the firm

level.7

We present estimation results in Table 3. In Panel A, we find that heat shocks adversely

7Note that in subsequent analyses where we focus on the effects of Peer Shock on multi-location firms,
we will tighten our specification by employing county-year fixed effects to facilitate comparison between
establishments within the same county based on their differential exposure to shocks based on their estab-
lishment networks. Here, however, we employ county and year fixed effects separately as Own Shock is
defined county-year-level.
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affect establishments of single-location firms. Specifically, the coefficient with respect to k = 2

implies that one hot day lowers employment growth at establishments of single location firms

by 1.09 pp. This is economically significant relative to the average 3-year growth rate of 2.6%

over our sample period.

Notably, we find that establishments of multi-location firms do not experience a propor-

tional decline in their workforce (if anything, we find slight increase over longer horizons).

Thus, although these firms may suffer a direct impact in their affected locations, they are

likely hiring workers in their unaffected locations leading to a recovery in the long term and

potentially giving them an advantage over single-location firms. Overall, this preliminary

evidence suggests that spatial labor reallocation by multi-location firms can mitigate the

impact of heat shocks on aggregate employment.

Next, in order to better understand whether changes in establishments’ employee count

is mainly driven by supply or demand side forces, we look into job postings. The main

idea of the exercise is that a reduction in actual employment accompanied with an increase

in job postings is more likely to be mainly driven by a labor supply shock (employees are

resigning from affected locations), whereas a reduction in actual employment accompanied

with a decrease in job postings is more likely to be mainly driven by a labor demand shock

(firms are downsizing in a given location).

Table 3 Panel B shows these results. We find that the effects on employment growth and

job postings seem to be negatively correlated: single-location firms seem to increase their job

postings as their employment count decreases, suggesting that the decrease in employment

is likely to be driven by employees leaving affected firms resulting in a labor shortage. On

the other hand, multi-location firms reduce postings over the long horizon as their actual

employment increases.

A.1 Firm size and number of locations

Heat shocks may induce adaptation efforts from both firms and workers. Worse environ-

mental conditions may render the operations of constrained firms’ unprofitable forcing them

to downsize and lower their labor demand. At the same time, workers may see value in

switching jobs after experiencing unpleasant conditions at their workplace. Our results in

Table 3 indicate that employment reallocation from single- to multi-location firms in re-

sponse to a own heat shock is driven by workers. This suggests that from the perspective

of climate shocks, workers see value in geographical diversification of their employers. To

further disentangle firm-driven vs. worker-driven reallocation, we divide firms according to
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their size and single/multi location status. For size, we divide firms into large and small

depending on their average employment being above- or below- median during our sample

period. Specifically, we divide firms into four groups — (a) large and multi-location, (b) small

and multi-location, (c) large and single-location, and (d) small and single-location. Then,

we examine how establishment of these various types of firms response to hot days in their

county.

Table 4 presents the results. The baseline coefficient of Own Shock refers to large multi-

location firms. Panel (A) corresponds to employment growth and Panel (B) corresponds to

job postings. We find that, in general, small firms see a weaker employment growth compared

to large firms. Among both small and large categories, single-location firms lose more workers

than multi-location firms. Notably, a negative relationship between employment growth and

job postings appears only for single-location firms. E.g., small multi-location firms lose

workers but do not increase their job postings. These results are consistent with the notion

that small firms are less resilient to heat shocks and their diminished employment growth is

driven by firm demand for workers. On the other hand, workers exit single-location firms in

favor of multi-location firms leading to employment reallocation across the two categories.8

Our results indicate that geographical diversification is important for firms to retain their

existing workers and attract new ones. Why would workers prefer to work for establishments

of multi-location firms? Multi-location firms might be more resilient to localized climate

shocks, as they have an option to shift operations to their unaffected plants. This can

reduce the likelihood of firm going out of business and increase job security at an average

establishment. Indeed, we find that multi-location firms respond to heat shocks by increasing

employment at their unaffected locations.9 Overall, our results highlight the benefits that

firms obtain through geographical diversification.

B Firm mitigation: Reallocation to unaffected peer counties

Next, we directly examine how multi-establishment firm networks affect the impact of heat

shocks on aggregate employment. Our empirical analysis closely follows prior studies on firm

networks (Giroud and Mueller, 2019; Giroud and Rauh, 2019). In particular, we look at

8We redo this test after employing more granular county × year fixed effects and find consistent results.
See Table A5.

9While we focus on the resilience of multi-location firms, there might be other reasons why workers may
prefer to work for them. E.g., multi-location firms can provide opportunities to relocate without switching
jobs, which might be valuable to workers. Alternatively, regional diversification might help firms in providing
cheaper health insurance and other non-wage benefits as all their employees are not exposed to the same
localized climate shock.
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employment growth in one establishment after its peer establishments owned by the same

firm face a heat-related disaster. If there is a positive spillover, it indicates that spatial

reallocation by firms reduces the overall impact of heat shocks on employment. Conversely,

a negative spillover would suggest that firm networks can transmit the impact of climate

shocks across regions amplifying their overall impact. To understand whether firm networks

help mitigate or instead amplify climate risks, we aggregate data at the firm-county-year level

and focus on firms with non-zero employment in two or more counties. The median firm in

our sample is present in 4 counties and has 20 employees and 1 establishment per county.

We calculate the exposure of each establishment to heat shocks at peer establishments

(i.e., those belonging to the same firm) by summing up hot days across peer locations after

weighting them by the relative size of the establishments. I.e., for firm f , county c, and year

t, we calculate

Peer Shockf,c,t = Log(1 + # Hot Days, Otherf,c,t) (2)

where

# Hot Days, Otherf,c,t =
∑
c′ ̸=c

Employmentf,c′,t−2

Employmentf,c,t−2

×# Hot Daysc′,t

The # Hot Days, Otherf,c,t variable measures the total number of hot days in peer loca-

tions (indexed by c′) after weighting them by their lagged-employment relative to county c.

We use several alternative ways to create this measure and show that our results are not

sensitive to this choice in the robustness section.

Our baseline specification to detect across-establishment mitigation by firms is

∆Log(Employment)f,c,t−1→t+k = δk × Peer Shockf,c,t + αf + αc,t + εf,c,t (3)

where ∆Log(Employment)f,c,t−1→t+k is the change in log employment of firm f in county c

from year t − 1 to t + k. We use firm fixed-effects (αf ) to absorb differential growth rates

across firms. We also use county-year fixed-effects (αc,t) to absorb county-level fluctuations

that may impact employment growth at an establishment. It also absorbs the effect of heat

shocks in the establishment’s own location at c. We cluster standard errors at the county

level.

Results are shown in Table 5 Panel A. We find a positive spillover effect of heat shocks

within the firm network. A 1% increase in the peer shock measure is associated with roughly

1% increase in employment growth over a 3-year period (see coefficient corresponding to

k = 2). To put the economic magnitude of this coefficient into perspective, consider the

following stylized example: Suppose a firm employs an equal number of employees in county
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c and c′. Based on our findings, one hot day in c′ corresponds to a 0.7% (1×ln(2)) uptick in

employment growth at this firm’s branch in county c. The average employment growth over

the same horizon is 2.4%, which highlights the economic significance of our spillover effect.

Panel B shows the spillover effect of heat shocks on connected establishments’ job postings.

Unlike in the previous analysis where we focused on affected counties, here we find that the

effect on employment growth is positively correlated with the effect on job postings. This

highlights that heat stress in a county indeed seems to induce multi-location firms to increase

their employment at unaffected peer counties, increasing their labor demand.

B.1 Robustness

We conduct several robustness tests to ensure that our main results are not sensitive to the

limitations posed by our data or our choice of measurements and econometric specifications.

We first explore alternative ways to measure peer shocks. For establishments in county c,

we use the ratio of employment at peer location (c′) and that at their own location (i.e., at c)

as the weighting variable in our primary measure (Peer Shockf,c,t). This measure accounts for

the initial size of the establishment (with respect to whom the peer shock is being measured)

and builds on the intuition that the operations at big establishments may not be severely

impacted by a hot day in locations where the firm has a handful of employees. However,

this measure does not account for the fact that if the firm has multiple unaffected locations,

the impact of heat shock at one location can be distributed across all unaffected locations,

and the shock applicable to a given location might be small. Moreover, even though we use

employment at t − 2 to create peer shock for year t, one may have concerns regarding its

mechanical correlation with our outcome measures, which is employment changes relative to

year t − 1. To address this concern, we calculate peer shock as the employment-weighted

average hot days across all the peer locations. Specifically, we define

Peer Shock, Altf,c,t = Log(1 +
∑
c′ ̸=c

Employmentf,c′,t−2∑
c′ ̸=c Employmentf,c′,t−2

×# Hot Daysc′,t)

We re-estimate our baseline specification with this alternative measure and present the results

in Table 6 Panel (b). We find that the new measure gives similar results as our original

measure.

Next, we address the concern that employment-based weights may suffer from previously

discussed concerns about the D&B employment numbers. We leverage the fact that the

recording of establishment presence is reasonably accurate in the D&B data and use the
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number of establishments to calculate the weighting variable. Specifically, we use the ratio

of establishment counts in county c′ and c to compute an alternative measure of peer shocks

(Peer Shock, Est-Wtf,c,t). We compute a third alternative measure (Peer Shock, Eq-Wtf,c,t)

using the simple average of hot days across all peer counties and use it in our baseline

specification. Finally, to address concerns about outliers driving our results, we also use a

binary peer shock measure (Peer Shock, Top Tercilef,c,t) that is one when the value of peer

shock lies in the top tercile of the distribution, and zero otherwise. Panel (b) of Table 6

shows that the results with these alternative measures are consistent with those using our

primary measure.

We also examine whether our results are driven by the choice of using SHELDUS hot

days measure instead of a temperature-based measure. Specifically, we create an alternative

peer shock measure by defining hot days as the number of days when the average daily

temperature exceeded the 99th percentile value for the county between the 1982-2020 period

(i.e., the period for which the daily temperature data at the county level was available in

PRISM). We find that results using this alternative definition of hot days is similar to those

in our baseline specification.

Next, we explore alternative sets of specifications. In our baseline specification, we use

firm and county-year fixed-effects. We do not use firm-county fixed effects because our

outcome variable (∆Log(Employment)f,c,t−1→t+k) is the annual change in employment at

the firm-county level. Furthermore, we do not employ firm-year fixed effects because we

want to incorporate aggregate firm response to heat shocks. With just the firm fixed-effect,

the coefficient of peer shock can either be driven by employment reallocation to the firm’s

unaffected locations or by the aggregate growth of firms that have a large presence in heat-

impacted regions. However, since firms exposed to heat shocks likely suffer an aggregate

decline in employment growth, our baseline specification likely underestimates the size of

the spillover effect. To verify this conjecture, we re-estimate our baseline specification with

both firm-year and county-year fixed effects and present the results in Table 6 Panel (c). We

find that after controlling for aggregate firm-level fluctuations, the coefficient of peer shock

more than doubles in magnitude, which is consistent with our conjecture. We also augment

our baseline specification to absorb local industry fluctuation by including firm and county-

industry-year fixed-effects obtaining results consistent with our baseline. We also get similar

results after excluding firm fixed effects (i.e., including only county × year fixed effects).

Lastly, re-estimate our baseline specification after double clustering the standard errors at

the county and firm level and find consistent results.

Next, we address concerns related to the employment data in D&B. Since D&B data is very
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close to Census in terms of cross-sectional snapshots, we now look at the number of active

establishments that a firm has in a given county to understand their reallocation behavior.

In other words, we use the change in the number of establishments of firm f in county c

from year t − 1 to t + k as an alternative outcome variable in the baseline specification.

This specification has two benefits. First, it benefits from the fact that D&B is much more

accurate in recording the presence of an active establishment in comparison to the accuracy

of their actual employment data (which in itself is of high quality for our sample firms).

Second, it shows that firms mitigate climate risk by closing their establishments in affected

locations and opening new establishments in unaffected regions. In other words, it sheds

light on the impact of climate shocks on establishments across the extensive margin. Results

presented in Table 6 (Panel (d)) show that one hot day in a particular county leads to a 0.03%

increase in the number of peer county establishments within a 3-year period. These results

show that the spatial reallocation strategy that firms employ against heat-related disasters

works across both intensive and extensive margins.

Next, we examine whether firms respond differently to heat shocks accompanied by work-

place accidents compared to those without them. To do so, we collect establishment-level data

on workplace accidents from the Occupational Safety and Health Administration (OSHA)

website. We then disaggregate our peer shock measure into two categories based on the pres-

ence or absence of workplace injuries or fatalities in the affected county. Table A9 shows that

firms reallocate workers in response to shocks, both with and without associated workplace

injuries and fatalities.

Finally, we address the concern that our peer shock measure may be persistent, in which

case, our baseline results may reflect the effect of multiple shocks experienced by an estab-

lishment over the years. In order to isolate the contemporaneous and lagged effect of a peer

shock in a single year, we estimate a distributed lag model. Specifically, we regress employ-

ment growth in a given year against the current and the lagged values of the peer shock

variable. Figure A2 shows the cumulative effect of peer shock in year t over the period of k

years (where k is between 0 and 5). The results are consistent with our baseline specification

both in terms of the magnitude and the statistical significance.

The findings in this section reinforce the idea that firm networks insure the economy

against climate-related risks. In particular, spatial reallocation of workforce can be seen

as one way in which firms are addressing the challenges posed by global warming to their

own operations and the broader economy. This also underscores the importance of large

multi-establishment firms in any comprehensive economic policy aimed at tackling climate

change.
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IV Aggregate outcomes

Next, we explore if heat shocks affect county level outcomes. Doing so sheds light on whether

the spatial reallocation channel that we have documented using establishment-level data has

aggregate macroeconomic implications. We proceed in two steps. First, we look at how

various county-level macroeconomic indicators evolve after the county experiences a heat

shock. Specifically, we estimate the following regression:

∆Yc,t−1→t+k = β1 ×Own Shockc,t + β2 × Peer Shockc,t + αc + αt + εc,t (4)

∆Yc,t−1→t+k denotes change in macroeconomic outcomes of county c from year t− 1 to t+ k.

Own Shockc,t is Log(1 + Hot Daysc,t), where Hot Daysc,t is the total number of hot days in

count c in year t according to SHELDUS. Peer shock measure (Peer Shockc,t) for county c in

year t as Log(1 + Hot Days, Otherc,t), where Hot Days, Otherc,t is defined as:

Hot Days, Otherc,t =
∑
f

Employmentf,c,t−2

Employmentc,t−2

× Hot Days, Otherf,c,t

In other words, county-level peer shock measure is lagged-employment-weighted average of

firm-level peer shock measure. Thus, counties with large presence of multi-location companies

will have links to many other counties and would likely benefit (from our channel) if heat

shocks affect any of those linked counties. In other words, we expect a positive association

between aggregate employment growth and peer shock at the county level. We employ

county fixed-effects to absorb cross-sectional differences in growth rates across counties. We

also employ year fixed-effects to control for aggregate fluctuations.

We present the results in Table 7. Panel (a) shows that in the immediate aftermath of

the heat shock, employment growth shrinks in the county. Specifically, Column (1) shows

that one hot day in the county reduces employment growth by 0.26 pp within a year. Over

longer horizons, the point estimate stays negative but becomes statistically insignificant as

the effect is measured more imprecisely. Peer counties, on the other hand, exhibit an increase

in employment growth after counties associated with them through firm networks experience

a heat-related disaster. One standard deviation increase in the peer shock measure increases

employment growth by 2.4 pp.

Diminished employment growth in response to heat shock can be driven either by an

outmigration of workers or by a decline in employment opportunities of locals. Similarly,

employment growth in response to peer shocks can provide job opportunities for migrants as

18



well as locals. To understand whether locals or migrants are driving the change in employment

growth, we decompose employment growth into two groups and examine the effect of own

shocks and peer shocks on the two groups separately.

Specifically, we decompose employment growth from t− 1 to t+ k into inflow of workers

from other counties and employment growth of local population. We use the IRS SOI data

to measure county-to-county migration of workers for each year in our sample period. The

benefit of using IRS data to measure migration is that it is derived from tax return data, which

means that it captures migrants that are either self-employed or employed by other firms.

Thus, net inflow of migrants can be interpreted as employment growth driven by migrant

population. The remaining about of county-level employment growth can be attributed to

the locals. We present these results in Panels (B) and (C) of Table 7. These results highlight

that both the own shock and peer shock effect is driven by locals and is not explained by

migration in and out of the county. Thus, they align with Behrer and Bolotnyy, 2023 who

find little to no impact of hurricanes on out-migration, highlighting the strength of deep

economic and social ties in determining worker mobility.

Overall, these county-level results are consistent with our earlier firm-level findings sug-

gesting that as a result of economic shocks, economic activity seems to be reallocated from

affected areas to unaffected ones through firms’ establishment networks.

In addition to counties, we also ask whether the local shocks have a measurable impact

at firm-level, but don’t find any measurable direct impact on firm profitability, return on

assets, asset growth, or expected stock returns. This is perhaps unsurprising, because any

individual shock represents a relatively small fraction of an average firm’s total operations

(an average shock affects around 2% of an average firm’s employees), and shocks have little

correlation across geographical locations.10 This is in stark contrast to aggregating results to

county-level, where shocks are by design highly correlated, and as such explains why we find

aggregate results at county but not at firm-level. These results are presented in the online

appendix (Figure A4 and Table A6).

A Reallocation and firm entry in new locations

In the previous section, we found that companies facing heat shocks in one location often

increase employment and establishments in their other locations. Such firms might also open

new establishments in areas where they weren’t before, especially in regions less exposed to

10Note that for smaller firms with fewer establishments (for which we don’t have data), any individual
shock should be more impactful.
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heat shocks.

To study this, we first aggregate our establishment-level data at the firm level. The

median firm in our sample employs around 200 employees and is located in 5 counties. We

calculate firm exposure to heat shocks as the fraction of firm’s employees impacted by heat

shocks across the firm’s locations. Specifically, we calculate heat shock for firm f in year t

(Firm Shockf,t) as

Firm Shockf,t = Log(1 + # Hot Days, Firmf,t) (5)

where

# Hot Days, Firmf,t =
∑
c

Employmentf,c,t−2

Employmentf,t−2

×# Hot Daysc,t.

We use employment weighting to ensure that our heat shock measure is comparable across

firms. Additionally, we use employment in year t− 2 as the weighting variable to avoid me-

chanical correlation between the exposure measure and our outcome variables (employment

changes with respect to year t− 1). The proportion of single-location firms in our sample is

30%, and their hot days measure is equal to the annual number of hot days in their county.

The average number of hot days experienced by our sample firm in a given year is 0.6. Thus,

Firm Shockf,t is zero if the firm did not experience any heat shock during the year and then

increases with the number of hot days experienced by the firm’s various establishments.

Then, we estimate the following equations:

Entry In New Countyf,t = γ × Firm Shockf,t−1 + αf + αt + εf,t (6)

Entry In New Countyf,t is an indicator variable that is one if the firm f opens an estab-

lishment in year t in a county where it did not had any establishment in the past. We first

look at entry in any new county and then examine entry into counties that are less exposed

to heat stress. αf and αt denote firm and year fixed-effects respectively.

Table 8 presents the results. The first column shows the entry of affected firms in any new

county. We find that 1 standard deviation increase in firm shock increase the probability of

entry into a new county by 0.09 pp (0.53×0.177). Alternatively, consider a firm with equal

employment in two counties. One hot day in one of the counties increases the probability

of entering a new county by 0.07 pp (0.40×0.177) In the next set of columns, we examine if

firms’ entry response is stronger in counties that have a lower exposure to heat stress. We

classify counties as having a lower exposure to heat stress if they have a below-median value

of expected heat damage, energy damage, and labor damage (as a proportion of GDP). In the

20



last column, we look at counties with below median value of chronic heat stress (i.e., counties

that have experienced fewer heat shocks in the past). Consistent with our conjecture, we

find that the entry response is generally stronger if the new county has a lower exposure to

heat stress.

In summary, these results suggest that firms hit by heat shocks in their existing locations

expand into new counties, particularly into those with a lower exposure to extreme heat

conditions. This is important for two reasons. First, it shows that heat shocks may affect

firm boundary along the spatial dimension. Second, it suggests that as heat-related disasters

become increasingly more likely, aggregate economic activity may shift towards areas less

prone to hot conditions.

V Heterogeneity

A Heterogeneity across firms

We now explore heterogeneity in firm characteristics to demonstrate that firms absorb the

costs associated with mitigation, and that financially healthier firms are better positioned to

manage climate risks by redistributing their workforce across different locations. We augment

our baseline model by introducing an interaction between the peer shock variable and various

firm characteristics. Specifically, we compute the size (represented by total employment),

leverage (book value of debt over assets), z-score (Altman, 1968), and gross profitability

(gross profit over assets) for all firms in our dataset. These firms are then categorized into

two groups based on whether their financial characteristic lies above or below the median

value in each year. Subsequently, we estimate the following equation:

∆Log(Employment)f,c,t−1→t+k = δk × Peer Shockf,c,t × Firm Characteristicf,t−1 (7)

+ γkPeer Shockf,c,t + αf + αc,t + εf,c,t

In this equation, ∆Log(Employment)f,c,t−1→t+k represents the change in log employment

for firm f in county c from year t−1 to t+k. Peer Shockf, c, t indicates the total heat shock

at peer establishments’ locations, as computed in Equation (2). Firm Characteristicf, t− 1

denotes the financial attributes (including indicators for large size, low leverage, high z-

score, and high profitability) of firm f in year t − 1. Following our baseline specification,

we apply firm (αf ) and county-year (αc,t) fixed-effects and cluster standard errors at the

county level. Table 9 shows how financial health affect firms’ mitigation behavior over a
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3-year timeframe (i.e., coefficients for k = 2). Our findings reveal that firms with greater

size, lower leverage, higher z-score, and increased profitability tend to relocate a higher

proportion of their workforce in response to heat shocks. These results provide suggestive

evidence that firms factor in the costs of mitigation, and stronger financial condition enhances

their resilience to climate shocks through the mechanism of spatial reallocation.

Next, we delve into whether the market’s perception of a firm’s exposure to climate risk

influences its mitigation efforts. There is increasing evidence that institutional investors value

climate risk disclosures of their portfolio companies (Ilhan et al., 2023). Investor perception

can impact a firm’s actions in two ways. First, it can inform the management that investors

are pricing climate risks and prompt them to hedge their exposure to avoid a higher cost

of capital (Giglio et al., 2021). Second, managers may gain valuable insights into how their

firm operations will be impacted by climate risk from market participants and they may

decide to act accordingly. We employ three measures created by Sautner et al., 2023 to

quantify climate change exposure at the firm level. The first measure (Climate exposure)

is the normalized frequency of climate-related bigrams in earnings call reports. The second

measure (Climate risk) is the relative frequency with which climate bigrams appear alongside

words like “risk”, “uncertainty”, or their synonyms. The third measure (Climate sentiment)

is the relative frequency with which climate-related bigrams appear alongside positive or

negative tone words.

We use these measures as firm characteristics as re-estimate Equation (8). Figure 2 plots

the interaction coefficient (δk) after k years following the shock. It shows that firms with

higher climate exposure, risk, and sentiment measures tend to reallocate more workers in

response to climate shocks (Panels (a), (b), and (c)). In panel (d), we follow the ESG-

classification of Cohen et al., 2020 to examine the share of ESG-affiliated mutual fund in-

vestors as a firm characteristic.11 We find that firms with a larger share of such investors

exhibit greater mitigation activity. Overall, these results suggest that investor perception

about firms’ climate exposure and their inclination towards ESG issues motivate firms to

shift their workforce away from heat shocks, enhancing the resilience of their overall employ-

ment against rising temperatures.

B Role of county characteristics

When a disaster hits a particular establishment, the firm can hire workers across a number of

peer locations. We now explore what regional characteristics (apart from projected damages)

11We classify a fund as green if it has “ESG” or “green” in its name, or if it is listed as an ESG fund either
by USSIF (The Forum of Sustainable and Responsible Investment) or by Charles Schwab.
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influence a firm’s decision to choose one peer location over the others. First, we study the

role of projected heat-related damages in a given county. The reallocation of the workforce

may require firms to reorganize their operations and is likely to be costly. To avoid incurring

this cost again, firms would likely move into places that are less exposed to heat stress

in the future. Climate scientists have built several models to estimate economic damages

from climate change in the United States at county-level for various hazards including heat

waves. We use Spatial Empirical Adaptive Global-to-Local Assessment System (SEAGLAS)

of Hsiang et al., 2017 to quantify the projected heat-related damage at the county level.

SEAGLAS first estimates how annual temperature distributions are projected to change as

a consequence of climate change in different counties, and then converts these shifts into

estimates of economic damages using hazard-specific dose-response functions. See Acharya

et al., 2022 for more detailed discussion of the measure.

The four measures we use are projected heat damage, and its three components: damages

related to climate change-induced increase in energy expenditures, decrease in labor produc-

tivity in industries where workers are directly exposed to outside temperatures (“high-risk

labor”), and decrease in labor productivity in other industries (“low-risk labor”). All these

measures are scaled by the local GDP. We conjecture that if the firms are readjusting their

workforce to mitigate heat risk, they are less likely to hire workers in peer locations with high

projected damages. On the other hand, if the reallocation activity is driven by some other

factor, we do not expect systematic differences across peer locations along this dimension.

To verify our conjecture, we estimate the following specification:

∆Log(Employment)f,c,t−1→t+k = δk × Peer Shockf,c,t × County Characteristicc,t−1 (8)

+ γkPeer Shockf,c,t + αf + αc,t + εf,c,t

Figure 3 shows that consistent with our hypothesis, employment growth is weaker in regions

with higher projected damages. Among different components of our heat damage measure,

we find that the results are mainly coming from exposure to energy damages and high-risk

labor productivity, with little evidence for low-risk labor. These results are similar to Acharya

et al., 2022 who find the same two components being the main channels through with heat

damages are related to asset prices. Overall, these results support our argument that firms

are reallocating their workforce to mitigate their heat exposure and not due to any other

reason.
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C Heterogeneity across industries

Excessive heat may damage firm productivity in multiple ways. It can adversely impact labor

productivity if the workforce is exposed to outdoor conditions (Graff Zivin and Neidell, 2014).

It can also increase energy expenses due to air-conditioning and other heat-resistant tech-

nologies making it prohibitively expensive to maintain a large establishment (Ponticelli et al.,

2023). Finally, it can affect local demand particularly impacting the firms in the non-tradable

sector. To understand what aspect of heat-related issues firms are trying to mitigate through

labor reallocation, we examine the heterogeneity in mitigation activity across industries.

Specifically, we augment our baseline specification with industry information and estimate

the following regression:

∆Log(Employment)f(i),c,t−1→t+k = δk × Peer Shockf(i),c,t × Industryi

+ γkPeer Shockf(i),c,t + αf(i) + αc,t + εf(i),c,t

∆Log(Employment)f(i),c,t−1→t+k is the change in log employment of firm f (in industry i)

in county c from year t − 1 to t + k. Peer Shockf(i),c,t denotes total heat shock at peer

establishments’ location as calculated in Equation (2). Industryi indicates broadly defined

industries categorized as 2-digit SIC codes. We employ firm (αf(i)) and county-year (αc,t)

fixed-effects and cluster standard errors at the county level.

We then calculate the marginal impact of Peer Shockf(i),c,t across each industry and plot

the impact corresponding to a 3-year period following the shock (i.e., k = 2) in Figure 4.

The two industries exhibiting the highest reallocation are construction and mining. Certain

industrial activities (e.g., mining) are perceived to be location specific. However, our results

are consistent with the idea that heat-affected mining companies are altering their capacity

utilization and increasing extraction in unaffected peer locations. An alternative explanation

is firms switching to more capital-intensive production processes in the affected areas. The

two industries with the lowest reallocation are FIRE (finance, insurance, and real estate) and

retail trade. Overall, these results suggest that the physical stress experienced by the workers

through unavoidable outdoor exposure is a key issue affecting firm’s mitigation choice.

To understand the importance of other climate-related issues, we look at industry char-

acteristics like the possibility of teleworking and tradability. For teleworking, we use the

measure of Dingel and Neiman, 2020 that classifies the feasibility of working at home for all

occupations based on surveys from the Occupational Information Network (O*NET), and ag-

gregates this to industry-level. For tradability, we use the geographical concentration-based

classification of Mian and Sufi, 2014, where tradability is determined based on the idea that
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tradable industries are likely to be more geographical concentrated. Table 10 shows that

tradable industries and industries amenable to teleworking exhibit lower mitigation. Overall

these results show that the concerns that firms are trying to address are related to physical

stress (and associated decline in productivity) experienced by workers and the local product

demand.12

VI Mitigation and the nature of climate shock

Having established our baseline results on firm mitigation of heat risk and explored firm

heterogeneity, we now study how the nature of climate shock affects this mitigation.

A Clustering of heat risk

If a mild heat shock occurs as a one-time event, companies can address it using temporary

solutions. However, when heat shocks are severe or happen in succession, permanent measures

such as workforce reallocation become necessary. Consequently, our study examines whether

firms’ efforts to mitigate are more robust in the face of more severe or clustered heat shocks,

referred to as heat spells. To begin, we modify our measure of peer shocks to study acute

shocks. Roughly 28% of the heat disasters in our dataset result in some form of measurable

property damage, with the average damage incurred by this subset amounting to $247,000.
We establish an alternative measure for peer shocks (Peer Shock (Acute)f,c,t) by considering

only hot days that led to non-zero property damage.13 Next, we introduce a second measure

(Peer Shock (Spells)f,c,t) to capture heat shocks occurring as spells. Many regions in the

recent past have experienced elongated spells of extremely high temperatures. For example,

Phoenix set a record of 31 consecutive days of temperatures above 110F in July 2023.14 To

examine how such spells affect our mitigation channel, we adjust our peer shock measure to

encompass periods of three or more consecutive hot days. We then re-evaluate our baseline

model using these modified measures and present the outcomes in Table 12.

In Panel (a), we present our baseline results for comparison. Panel (b) demonstrates that

mitigation efforts are more pronounced in response to acute heat shocks. This indicates that

firms adopt more lasting mitigation strategies when faced with more extreme shocks. In Panel

12Extreme temperatures can also cause worker injuries and fatalities (Park et al., 2021), further lowering
their productivity and incentivizing firms to reallocate their workforce.

13Heat shocks often cause property damage by weakening buildings’ foundations and roofs (causing leak-
age). Extreme temperatures can also cause electrical failures due to overheating.

14See CBS news article dated August 1, 2023 (link).
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(c), we show that the response to heat spells is similar to our baseline effect, highlighting the

impact of such spells on firms’ mitigation response.

We then delve into whether heat shocks in counties already grappling with long-term

climate change trigger a more substantial reaction from firms. On one hand, past exposure

may render counties more resilient to future heat shocks if they invested in heat-resistant

infrastructure following prior shocks. On the other hand, new heat shocks could exacerbate

the strain on already deteriorating infrastructure, motivating firms to adopt longer-term

mitigation strategies. Agents in counties with frequent heat shocks may also have more

precise information about the likelihood and duration of the disasters, further increasing

their local investments in mitigation and/or willingness to migrate (Acharya et al., 2023).

Thus, understanding the impact of “chronic” heat stress on counties can shed light on the

long-term impact of global warming (Dell et al., 2014). We compute the average number of

hot days experienced by each county from 1960 (the start of the PRISM sample) to 2008 (the

start of our D&B sample). Counties ranking in the top quintile (20%) of this distribution

are classified as chronically heat stressed. Subsequently, we revise our peer shock measure to

encompass hot days in counties with chronic stress and denote it as Peer Shock (Chronic)f,c,t.

Table 12 (Panel (d)) illustrates that the response to such shocks is more pronounced that

our original shocks, suggesting that current shocks build upon firms’ past experience and

intensify their inclination to relocate away from heat-stressed counties.

In summary, these findings demonstrate that the relocation of firms away from counties

becomes more pronounced when these counties experience more extreme heat shocks and

long-term climate degradation.

B Other climate hazards

Our main focus in this study is on how companies shift their workforce in reaction to heat

shocks. In this section, we look at “compound” climate shocks, i.e., the simultaneous oc-

currence of heat shocks alongside other natural disasters. For example, Maui experienced a

devastating episode of wildfires in August 2023 which was likely exacerbated by rising tem-

peratures and hurricane-like wind conditions.15 The frequency of multiple hazards occurring

in close proximity like this is projected to significantly increase in the future (Jones et al.,

2020; Raymond et al., 2022). Such compound disasters may result in higher economic dam-

ages compared to a single disaster (Chen et al., 2024) and managing them may require a more

comprehensive and costly approach (Zscheischler et al., 2020). Hence, these combined shocks

15See The Washington Post report dated August 12, 2023 (link).
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could potentially drive firms to exit the impacted county, resulting in a stronger response in

terms of workforce reallocation.

In addition to heat-related dangers, the PRISM dataset covers four other types of hazards:

droughts, wildfires, hurricanes and storms, and earthquakes. To explore the idea of compound

shocks, we modify our measure of heat shocks to account for hot days that coincide with other

disasters in the same year. For example, Peer Shock (Heat + Drought)f,c,t is calculated using

hot days in county c which experienced a drought in year t. We then update our main model

with these adjusted measures and present the findings in Panel (a). Our results demonstrate

that, except for earthquakes (where we have too few co-occurrences), employment reallocation

is stronger in response to compound shocks. Firm response towards heat disasters is most

amplified by concurrent hurricanes and storms followed by drought events. At the same

time, concurrent wildfires do not appear to increase firms’ response to heat shocks. These

results highlights the increasing significance of spatial strategies to mitigate the effects of

more frequent combined climate shocks.

Subsequently, we delve into whether firms make similar workforce adjustments when facing

other natural disasters in isolation. For each of the alternative disasters, we create a measure

that counts the number of days a county experienced that disaster in a given year. We

then update our main model with these new measures and present the outcomes in Figure

5 Panel (b). Our findings reveal that firms handle all forms of climate risks by relocating

their workforce from affected establishments to unaffected ones. The effect is the largest for

hurricanes and storms followed by heat and wildfires. Firms’ response is the smallest in case

of droughts and earthquakes.

VII Conclusion

In this paper, we studied how firms respond to extreme temperature shocks by reallocating

their labor force across geographies. We found that firms operating in multiple counties

respond to these shocks by shifting employment to unaffected counties, consistent with firms

adjusting their operations to mitigate climate change related risks. Single location firms

simply lose employees in affected counties.

We found that the effect is stronger for firms that are more profitable, less levered and

financially constrained, consistent with financial constraints being an impediment for efficient

resource reallocation. We also found that the effect is stronger for firms that are more

concerned about their climate change exposure and that have a larger fraction of ESG funds as

their owners, suggesting that more concerned managers and owners responds more proactively
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to extreme temperature shocks. Vacancies are more likely to be migrated to counties with

strong local economies, and to counties with lower ex-ante climate change exposure.

We also found that counties experiencing heat shocks experience employment shift from

small to large firms within the county. Such shocks also increase the employment in peer

counties (i.e., those linked to it through firm networks) through the firm mitigation channel.

This increase is driven by firms hiring new workers in the peer counties and not by work-

related migration across counties.

Taken together, our results have implications on how we should expect firms adjust their

operations if heat waves intensify in the future as a consequence of climate change. Future

work on this topic can explore if firms adjust their fixed capital and labor composition in

response to rising temperatures, channels (exit versus voice) through which climate-concerned

investors affect firm mitigation strategies, and the broader macroeconomic implications of

spatial redistribution of economic activity resulting from firm mitigation of heat risk. We

have likely only scratched the surface of a promising line of research inquiry linking climate

change to industrial and economic organization via the corporate finance channel.
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Figure 1: Heat shocks across the US

Notes: Figure 1 shows the counties that experienced one or more hot days throughout our sample
period of 2009 to 2020. Hot Days are days when a loss (property, crop, injury, or fatality) occurred
from a heat hazard according to the SHELDUS database.
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Table 1: Summary Statistics

Mean SD 1%tile 25%tile Median 75%tile 99%tile

Panel (A): Firm-county-year sample

Employment 118 659 1 7 21 79 1,521
# Establishments 2.3 5.7 1 1 1 2 18
# Hot Days .47 3 0 0 0 0 11
# Hot Days, Other 1,092 14,693 0 0 .74 123 17,928
∆ Log(Employment) (%) .8 29 -69 0 0 0 88
Own Shock .12 .47 0 0 0 0 2.5
Peer Shock 2.4 2.9 0 0 .55 4.8 9.8
Total Postings/L.Employment (%) 7 27 0 0 0 0 200
Exposed Postings/L.Employment (%) 1.8 42 0 0 0 0 30
Non-Exposed Postings/L.Employment (%) 5.1 20 0 0 0 0 149

Panel (B): Firm-year sample

Single Location .3 .46 0 0 0 1 1
Employment 1,074 8,526 27 140 232 514 14,538
# Establishments 21 196 1 3 5 11 271
# Hot Days, Firm .59 3 0 0 0 0 11
∆ Log(Employment) (%) 2.1 38 -88 0 0 0 113
Firm Shock .19 .52 0 0 0 0 2.5
Entry In New County .12 .32 0 0 0 0 1

Panel (C): County-year sample

Employment 21,840 76,801 20 1,172 3,606 11,931 323,537
∆ Log(Employment) (%) 1.3 7.8 -21 -1.6 0 3.6 29
∆ Log(Employment), Locals (%) -.27 3 -6.8 -1.7 -.25 1.1 7.7
∆ Log(Employment), Migrants (%) .18 2.4 -3.4 -.56 .039 .82 4.8
Own Shock .03 .24 0 0 0 0 1.6
Peer Shock 6.2 1.5 2.9 5.3 6.2 7.1 10

Notes: Table 1 presents the summary statistics of the main variables used in the empirical

analysis.
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Table 2: Determinants of SHELDUS Heat Shock

# Hot Days

# Days(T≥99Pctile) 0.116∗∗∗ 0.117∗∗∗ 0.109∗∗∗ 0.066∗∗∗

(0.003) (0.005) (0.006) (0.006)

# Days(T≥99Pctile) 0.076∗∗∗

× High Social Vulnerability/Low Resilience (0.009)

County FE ✓ ✓ ✓
Year FE ✓ ✓
Observations 113,763 113,763 113,763 113,763
ȳ 0.728 0.728 0.728 0.728
Adj. R2 0.014 0.022 0.082 0.083

Notes: Table 2 shows the relationship between the number of disaster days in the SHELDUS
data with the number of temperature-based hot days. We estimate the following specification:

# Hot Daysc,t = # Days(T≥99Pctile)c,t + αc + αt + εc,t

# Hot Daysc,t is the number of hot days in county c in year t according to the SHELDUS
data. # Days(T≥99Pctile)c,t is the number of days in year t when the average temperature in
county c was above its 99th percentile value over the 1982-2020 period. In the final column, we
interact the main independent variable with a dummy variable (High Social Vulnerability/Low
Resilience) that equals one for counties with high community risk factor (high social vulnera-
bility/low community resilience) according to FEMA Risk Index data. We employ county (αc)
and year (αt) fixed-effects. Standard errors are clustered at the county level.
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Table 3: Establishment response to own shock

∆Log(Employment)t−1,t+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Panel (A-1): Average establishment

Own Shock 0.024 -0.090 -0.005 0.031 0.243 0.327∗∗

(0.056) (0.096) (0.126) (0.133) (0.156) (0.147)

Panel (A-2): Establishments of single- vs. multi-location firms

Own Shock 0.018 -0.076 0.057 0.150 0.396∗∗ 0.438∗∗∗

(0.058) (0.102) (0.130) (0.133) (0.160) (0.146)

Single Location × Own Shock 0.152 -0.360 -1.508∗∗ -2.850∗∗∗ -3.586∗∗∗ -2.575∗∗∗

(0.299) (0.520) (0.663) (0.761) (0.686) (0.556)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
County FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 5,664,113 4,826,630 4,106,215 3,460,396 2,868,812 2,330,678
ȳ 0.802 1.898 2.618 3.488 4.190 5.072

Total Postings/L.Employmentt+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Panel (B-1): Average establishment

Own Shock 0.038 0.182 0.217∗ 0.089 -0.222 -0.266∗∗

(0.103) (0.135) (0.119) (0.113) (0.146) (0.122)

Panel (B-2): Establishments of single- vs. multi-location firms

Own Shock 0.021 0.153 0.179 0.053 -0.265∗ -0.290∗∗

(0.107) (0.138) (0.118) (0.113) (0.146) (0.120)

Single Location × Own Shock 0.340 0.567∗∗ 0.760∗∗∗ 0.704∗∗∗ 0.865∗∗∗ 0.491∗∗

(0.223) (0.262) (0.244) (0.258) (0.192) (0.222)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
County FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 1,391,478 1,277,856 1,106,821 950,763 803,600 663,195
ȳ 7.027 7.334 7.623 8.016 8.292 8.587

Notes: Table 3 shows how establishments respond to heat shocks in their county. Panel (A-1) shows

the effect on employment growth at an average establishment and Panel (A-2) shows the effect on

the establishments of single- and multi-location firms. Similarly, Panel (B-1) shows the effect on job

postings on an average establishment whereas Panel (B-2) shows the effect broken down by single- and

multi-location firms. The outcome variable in Panels (A-1) and (A-2) is ∆Log(Employment)f,c,t−1→t+k,

which is the change in log employment of firm f in county c from year t − 1 to t + k. The outcome

variable in Panels (B-1) and (B-2) is ∆Total Postings/L.Employmentf,c,t+k, which is the total job-

postings scaled by previous year’s employment in year t+ k. Own Shockc,t equals Log(1+# Hot Days)

in county c in year t. We employ firm (αf ), county (αc) and year (αt) fixed-effects. Standard errors are

clustered at the county level.
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Table 4: Establishment response to own shock: Role of firm size

∆Log(Employment)t−1,t+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Own Shock 0.153∗ 0.169 0.381∗∗ 0.613∗∗∗ 0.931∗∗∗ 0.975∗∗∗

(0.081) (0.138) (0.177) (0.182) (0.218) (0.196)

Single-Location/Small × Own Shock -0.238 -0.983 -2.375∗∗∗ -4.632∗∗∗ -5.390∗∗∗ -4.285∗∗∗

(0.336) (0.683) (0.909) (1.077) (0.946) (0.764)

Single-Location/Large × Own Shock 0.364 -0.090 -1.100∗ -1.531∗∗ -2.385∗∗∗ -1.500∗∗

(0.444) (0.560) (0.636) (0.668) (0.676) (0.654)

Multi-Location/Small × Own Shock -0.739∗∗∗ -1.308∗∗∗ -1.706∗∗∗ -2.410∗∗∗ -2.758∗∗∗ -2.746∗∗∗

(0.170) (0.280) (0.351) (0.399) (0.414) (0.430)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
County FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 5,664,113 4,826,630 4,106,215 3,460,396 2,868,812 2,330,678
ȳ 0.802 1.898 2.618 3.488 4.190 5.072
Adj. R2 0.012 0.033 0.052 0.073 0.096 0.122

Total Postings/L.Employmentt+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Own Shock 0.033 0.137 0.191∗ 0.076 -0.198 -0.203
(0.126) (0.147) (0.113) (0.110) (0.149) (0.133)

Single-Location/Small × Own Shock 0.173 0.605∗∗ 0.750∗∗ 0.522∗ 0.547∗∗ -0.011
(0.280) (0.294) (0.307) (0.288) (0.235) (0.310)

Single-Location/Large × Own Shock 0.537∗∗ 0.554 0.745∗∗ 0.893∗∗∗ 1.131∗∗∗ 0.958∗∗∗

(0.258) (0.353) (0.336) (0.319) (0.298) (0.308)

Multi-Location/Small × Own Shock -0.041 0.054 -0.040 -0.077 -0.229 -0.296∗

(0.133) (0.142) (0.151) (0.167) (0.180) (0.173)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
County FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 1,391,478 1,277,856 1,106,821 950,763 803,600 663,195
ȳ 7.027 7.334 7.623 8.016 8.292 8.587
Adj. R2 0.324 0.334 0.354 0.377 0.386 0.391

Notes: Table 4 shows how establishments of respond to heat shocks in their county. Panel (A) shows the

effect on employment growth and Panel (B) shows the effect on job postings. The outcome variable in

Panels (A) is ∆Log(Employment)f,c,t−1→t+k, which is the change in log employment of firm f in county

c from year t− 1 to t+ k. The outcome variable in Panel (B) is ∆Total Postings/L.Employmentf,c,t+k,

which is the total job-postings scaled by previous year’s employment in year t+k. Own Shockc,t equals

Log(1+# Hot Days) in county c in year t. We interact Own Shock with indicator variables for whether

the establishment belongs to a single-location firm, and whether it belongs to a small firm. We employ

firm (αf ), county (αc) and year (αt) fixed-effects. Standard errors are clustered at the county level.
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Table 5: Establishment response to peer shock

Panel (A): Employment growth of average establishment

∆Log(Employment)t−1,t+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Peer Shock 0.612∗∗∗ 0.728∗∗∗ 1.016∗∗∗ 1.351∗∗∗ 1.640∗∗∗ 1.802∗∗∗

(0.018) (0.027) (0.038) (0.049) (0.060) (0.069)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
County × Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 5,555,947 4,726,836 4,015,440 3,378,682 2,797,336 2,267,285
ȳ 0.770 1.785 2.424 3.214 3.899 4.748
Adj. R2 0.012 0.027 0.041 0.057 0.075 0.092

Panel (B): Job postings of average establishment

Total Postings/L.Employmentt+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Peer Shock 0.803∗∗∗ 0.663∗∗∗ 0.591∗∗∗ 0.577∗∗∗ 0.480∗∗∗ 0.415∗∗∗

(0.036) (0.033) (0.034) (0.033) (0.033) (0.029)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
County × Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 1,352,263 1,243,747 1,076,981 924,851 781,349 644,505
ȳ 7.048 7.342 7.632 8.032 8.312 8.610
Adj. R2 0.317 0.325 0.346 0.369 0.379 0.384

Notes: Table 5 shows how establishments respond to heat shocks in their peer counties. Panel

(A) shows the effect on employment growth and Panel (B) shows the effect on job postings.

The outcome variable in Panels (A) is ∆Log(Employment)f,c,t−1→t+k, which is the change in

log employment of firm f in county c from year t− 1 to t+ k. The outcome variable in Panel

(B) is ∆Total Postings/L.Employmentf,c,t+k, which is the total job-postings scaled by previous

year’s employment in year t+ k. Peer Shockc,t equals Log(1+# Hot Days, Other) in county c

in year t. We employ firm (αf ), county (αc) and year (αt) fixed-effects. Standard errors are

clustered at the county level.
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Table 6: Firm mitigation: Reallocation to unaffected peer counties

∆Log(Employment)t−1,t+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Panel (a): Baseline specification

Peer Shock 0.612∗∗∗ 0.728∗∗∗ 1.017∗∗∗ 1.352∗∗∗ 1.640∗∗∗ 1.803∗∗∗

(0.018) (0.027) (0.038) (0.049) (0.060) (0.069)

Panel (b): Robustness - Alternative measures of Peer Shock

Peer Shock, Alt 0.701∗∗∗ 0.449∗∗∗ 0.322∗∗∗ 0.731∗∗∗ 1.123∗∗∗ 1.092∗∗∗

(0.058) (0.073) (0.090) (0.110) (0.136) (0.150)

Peer Shock, (Est-Wt) 0.304∗∗∗ 0.031∗ 0.080∗∗∗ 0.229∗∗∗ 0.378∗∗∗ 0.388∗∗∗

(0.014) (0.017) (0.022) (0.028) (0.034) (0.038)

Peer Shock, (Eq-Wt) 0.154∗∗ 0.518∗∗∗ 0.903∗∗∗ 0.899∗∗∗ 0.947∗∗∗ 0.645∗∗∗

(0.068) (0.095) (0.109) (0.131) (0.146) (0.136)

Peer Shock (Top Tercile) 1.718∗∗∗ 1.895∗∗∗ 2.747∗∗∗ 3.823∗∗∗ 4.642∗∗∗ 5.317∗∗∗

(0.087) (0.136) (0.187) (0.245) (0.307) (0.359)

Peer Shock (T≥99Pctile) 0.452∗∗∗ 0.779∗∗∗ 1.115∗∗∗ 1.448∗∗∗ 1.825∗∗∗ 2.053∗∗∗

(0.014) (0.022) (0.031) (0.042) (0.051) (0.057)

Panel (c): Robustness - Alternative fixed effects and clustering

Firm×Year and County×Year FE

Peer Shock 1.171∗∗∗ 2.093∗∗∗ 2.893∗∗∗ 3.598∗∗∗ 4.172∗∗∗ 4.785∗∗∗

(0.030) (0.051) (0.072) (0.092) (0.112) (0.129)

Firm and County×Industry×Year FE

Peer Shock 0.807∗∗∗ 1.069∗∗∗ 1.494∗∗∗ 1.995∗∗∗ 2.360∗∗∗ 2.640∗∗∗

(0.025) (0.039) (0.055) (0.070) (0.089) (0.105)

County×Year FE

Peer Shock 0.277∗∗∗ 0.394∗∗∗ 0.486∗∗∗ 0.602∗∗∗ 0.741∗∗∗ 0.890∗∗∗

(0.010) (0.016) (0.021) (0.027) (0.033) (0.040)

Double clustering at County and Firm level

Peer Shock 0.612∗∗∗ 0.728∗∗∗ 1.017∗∗∗ 1.352∗∗∗ 1.640∗∗∗ 1.803∗∗∗

(0.038) (0.049) (0.066) (0.083) (0.098) (0.104)

Panel (d): Robustness - Alternative outcome

∆Log(Establishments)t−1,t+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Peer Shock 0.133∗∗∗ 0.022∗∗∗ 0.039∗∗∗ 0.110∗∗∗ 0.178∗∗∗ 0.198∗∗∗

(0.006) (0.007) (0.009) (0.012) (0.016) (0.018)

Observations 5,556,578 4,727,432 4,015,976 3,379,161 2,797,759 2,267,637
ȳ 0.770 1.785 2.424 3.213 3.899 4.748
Adj. R2 0.010 0.026 0.040 0.055 0.072 0.090

Notes: Table 6 shows the results of our baseline specification (Panel (a)) given by Equation
(3) along with several robustness tests (Panels (b), (c), and (d)). In panel (b), we define our
peer shock measure in alternative ways. In panel (c), we use alternative set of fixed effects and
clustering levels. In panel (d), we use alternative set of outcome variables.39



Table 7: County response to own and peer shock

Panel (A): Employment growth

∆Log(Employment)t−1,t+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Own Shock -0.380∗∗ -0.753∗∗∗ -0.641∗∗ -0.611 -0.493 -0.544
(0.179) (0.265) (0.326) (0.415) (0.399) (0.407)

Peer Shock 1.614∗∗∗ 4.363∗∗∗ 6.576∗∗∗ 7.481∗∗∗ 7.228∗∗∗ 6.230∗∗∗

(0.253) (0.469) (0.752) (0.900) (0.886) (0.889)

County FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 28,310 25,505 22,680 19,853 17,006 14,169
ȳ 1.376 2.258 3.366 4.655 5.826 7.030
Adj. R2 0.190 0.221 0.322 0.402 0.535 0.635

Panel (B): Employment growth (Locals)

∆Log(Employment)t−1,t+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Own Shock -0.112∗ -0.168∗∗ -0.258∗∗∗ -0.225∗∗ -0.181∗ -0.110
(0.063) (0.075) (0.081) (0.090) (0.098) (0.092)

Peer Shock 0.082 0.110 0.070 0.288∗∗ 0.427∗∗∗ 0.397∗∗

(0.057) (0.079) (0.102) (0.140) (0.159) (0.187)

County FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 28,482 25,581 22,725 19,883 17,057 14,216
ȳ -0.241 -0.369 -0.675 -1.056 -1.885 -2.264
Adj. R2 0.513 0.518 0.631 0.675 0.720 0.780

Panel (C): Employment growth (Migrants)

∆Log(Employment)t−1,t+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Own Shock 0.016 0.042 0.093 0.089 0.123 0.158∗∗

(0.029) (0.047) (0.061) (0.081) (0.086) (0.067)

Peer Shock 0.079∗ 0.054 -0.013 0.003 0.084 0.062
(0.043) (0.078) (0.108) (0.130) (0.131) (0.120)

County FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 28,572 25,726 22,884 20,032 17,172 14,325
ȳ 0.231 0.432 0.599 0.807 1.059 1.288
Adj. R2 0.485 0.635 0.731 0.807 0.878 0.927

Notes: Table 7 shows outcomes in a county after heat shocks hit it and its peer counties. We aggregate
data at the county-year level and estimate the following specification:

∆Yc,t−1→t+k = β1 ×Own Shockc,t + β2 × Peer Shockc,t + αc + αt + εc,t

∆Yc,t−1→t+k denotes the total employment growth (Panel (A)), employment growth of locals (Panel(B)),

and employment growth due to migrant inflow (Panel (C)) of county c from year t − 1 to t + k. Own

Shock is Log(1 + # Hot Daysc,t) and Peer Shock is Log(1 + # Hot Days, Otherc,t). # Hot Daysc,t is

number of hot days in county c and # Hot Days, Otherc,t is the employment weighted number of hot

days in c’s peer counties in year t. We employ county (αc) and year (αt) fixed-effects. We cluster

standard errors at the county level.
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Table 8: Reallocation and firm entry in new locations

Entry In New County× 100

Low Labor Low Labor
Low Heat Low Energy damage/GDP damage/GDP Low Chronic

Overall damage/GDP damage/GDP (high-risk) (low-risk) Heat Stress

Firm Shock 0.177∗ 0.252∗∗∗ 0.241∗∗∗ 0.201∗∗ 0.284∗∗∗ 0.169∗

(0.092) (0.077) (0.077) (0.079) (0.075) (0.086)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 540,874 540,874 540,874 540,874 540,874 540,874
ȳ 8.833 6.411 6.329 6.415 5.873 7.328
Adj. R2 0.270 0.244 0.245 0.243 0.236 0.251

Notes: Table 8 shows firms entering into new counties after experiencing a heat shock in one
of their locations. The regression equation we estimate is:

Entry In New Countyf,t = γ × Firm Shockf,t−1 + αf + αt + εf,t

Entry In New Countyf,t is an indicator variable that is one if the firm f opens an establishment

in year t in a county where it did not had any establishment in the past. In the first column, we

look at the firm entry in any new county. In the next set of columns, we examine firms’ entry

into counties according to their exposure to heat-related characteristics. E.g., the outcome

variable in the second column is an indicator variable that is one if the firm f entered a county

with below-median value of expected heat damage/GDP. Firm Shockf,t−1 is the exposure of

firm f to heat shocks in year t− 1 as defined in equation (5). αf and αt denote firm and year

fixed-effects respectively. Standard errors are clustered at the firm level.
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Table 9: Heterogeneity across firms: Firm financials

∆Log(Employment)t−1,t+k × 100

k=+2 k=+2 k=+2 k=+2 k=+2

Peer Shock 0.263∗∗∗ 2.016∗∗∗ 1.972∗∗∗ 2.002∗∗∗ 0.672
(0.066) (0.083) (0.087) (0.095) (0.856)

Large Firm -11.377∗∗∗ -12.162∗∗∗

(0.295) (0.830)

Large Firm × Peer Shock 1.091∗∗∗ 1.401∗

(0.066) (0.849)

Low Leverage -0.275 -0.701
(0.565) (0.586)

Low Leverage × Peer Shock 0.533∗∗∗ 0.534∗∗∗

(0.091) (0.094)

High Z-Score 0.525 -0.467
(0.506) (0.558)

High Z-Score × Peer Shock 0.305∗∗∗ 0.117
(0.070) (0.082)

High Profitability 6.645∗∗∗ 7.461∗∗∗

(0.563) (0.595)

High Profitability × Peer Shock 0.176∗∗ 0.047
(0.080) (0.091)

Firm FE ✓ ✓ ✓ ✓ ✓
County × Year FE ✓ ✓ ✓ ✓ ✓
Sample Full D&B Compustat Compustat Compustat Compustat
Observations 4,015,976 463,256 463,256 463,256 463,256
ȳ 2.424 4.206 4.206 4.206 4.206
Adj. R2 0.043 0.035 0.035 0.036 0.036

Notes: Table 9 shows the relationship between firm financials and labor reallocation in re-
sponse to heat shocks. The regression equation we estimate is:

∆Log(Employment)f,c,t−1→t+k = δk × Peer Shockf,c,t × Firm Characteristicf,t−1

+ γkPeer Shockf,c,t + αf + αc,t + εf,c,t

∆Log(Employment)f,c,t−1→t+k is the change in log employment of firm f in county c from

year t − 1 to t + k. We present results corresponding to a 3-year horizon (i.e., k = 2).

Peer Shockf,c,t denotes total heat shock at peer establishments’ location as calculated in Equa-

tion (2). Firm Characteristicf,t−1 denotes the financial characteristics (indicators for large size,

low leverage, high z-score, and high profitability) of firm f in year t− 1. We employ firm (αf )

and county-year (αc,t) fixed-effects. Standard errors are clustered at the county level.
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Figure 2: Heterogeneity across firms: Investor perception

(a) Climate Exposure
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(c) Climate Sentiment
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(d) ESG Mutual Fund Share
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Notes: Figure 2 shows the relationship of investor beliefs and composition with labor reallocation
in response to heat shocks (3-year horizon). The regression equation we estimate is:

∆Log(Employment)f,c,t−1→t+k = δk × Peer Shockf,c,t × Firm Characteristicf,t−1

+ γkPeer Shockf,c,t + αf + αc,t + εf,c,t

∆Log(Employment)f,c,t−1→t+k is the change in log employment of firm f in county c from year
t−1 to t+k. Peer Shockf,c,t denotes total heat shock at peer establishments’ location as calculated
in Equation (2). Firm Characteristicf,t−1 denotes climate-related exposure, risk, and sentiment
(Panels (a), (b), and (c)) of firm f in year t − 1 according to their earnings call transcript as
measured by Sautner et al., 2023. It also denotes the share of ESG-affiliated mutual funds holding
the firm’s shares in Panel (d). We employ firm (αf ) and county-year (αc,t) fixed-effects. Standard
errors are clustered at the county level.
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Figure 3: Role of heat-related county characteristics

(a) Heat damage/GDP
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(b) Energy damage/GDP

-.4

-.3

-.2

-.1

0

D
iD

 C
oe

ffi
ci

en
t (

δk )

-1 0 1 2 3 4 5
Horizon k (in years)

(c) Labor damage/GDP (high-risk)
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(d) Labor damage/GDP (low-risk)
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Notes: Figure 3 shows the county-level factors that influence firms’ decision to reallocate into that
county when its establishments elsewhere are impacted by heat shocks. We estimate

∆Log(Employment)f,c,t−1→t+k = δk × Peer Shockf,c,t × County Characteristicc,t

+ γkPeer Shockf,c,t + αf + αc,t + εf,c,t

and plot the interaction coefficient (δk) with respect to each county characteristic. αf and αc,t

denote firm and county-year fixed-effects and standard errors are clustered at the county level.
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Figure 4: Mitigation across industries - I
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Notes: Figure 4 shows the extent of mitigation across broadly defined industries. The regression
we estimate is:

∆Log(Employment)f(i),c,t−1→t+k = δk × Peer Shockf(i),c,t × Industryi

+ γkPeer Shockf(i),c,t + αf(i) + αc,t + εf(i),c,t

∆Log(Employment)f(i),c,t−1→t+k is the change in log employment of firm f (in industry i) in county
c from year t−1 to t+k. Peer Shockf(i),c,t denotes total heat shock at peer establishments’ location
as calculated in Equation (2). Industryi indicates broadly defined industries categorized as 2-digit
SIC codes. We employ firm (αf(i)) and county-year (αc,t) fixed-effects. Standard errors are clustered
at the county level. The figure plots the marginal effect of Peer Shockf(i),c,t on 3-year employment
change (i.e., corresponding to k = 2) separately by industry.
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Table 10: Mitigation across industries

∆Log(Employment)t−1,t+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Panel (a): Teleworking

Peer Shock 0.453∗∗∗ 0.783∗∗∗ 1.099∗∗∗ 1.436∗∗∗ 1.760∗∗∗ 2.002∗∗∗

(0.023) (0.032) (0.044) (0.055) (0.068) (0.077)

Telework × Peer Shock 0.222∗∗∗ -0.078∗∗∗ -0.116∗∗∗ -0.119∗∗∗ -0.164∗∗∗ -0.271∗∗∗

(0.018) (0.023) (0.030) (0.035) (0.041) (0.043)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
County × Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 5,545,208 4,717,622 4,007,575 3,372,004 2,791,784 2,262,784
ȳ 0.771 1.786 2.423 3.212 3.898 4.746
Adj. R2 0.012 0.027 0.041 0.057 0.075 0.092

Panel (b): Non-Tradability

Peer Shock 0.624∗∗∗ 0.710∗∗∗ 1.004∗∗∗ 1.333∗∗∗ 1.620∗∗∗ 1.779∗∗∗

(0.018) (0.028) (0.039) (0.051) (0.061) (0.069)

Non-Tradable × Peer Shock -0.077∗∗∗ 0.122∗∗∗ 0.088∗∗ 0.130∗∗∗ 0.148∗∗∗ 0.174∗∗∗

(0.020) (0.029) (0.038) (0.047) (0.055) (0.059)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
County × Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 5,556,578 4,727,432 4,015,976 3,379,161 2,797,759 2,267,637
ȳ 0.770 1.785 2.424 3.213 3.899 4.748
Adj. R2 0.012 0.027 0.041 0.057 0.075 0.092

Notes: Table 10 shows that firm mitigation varies with industry characteristics. The regression
equation we estimate is:

∆Log(Employment)f(i),c,t−1→t+k = δk × Peer Shockf(i),c,t × Industry Characteristici,t−1

+ γkPeer Shockf(i),c,t + αf(i) + αc,t + εf(i),c,t

∆Log(Employment)f(i),c,t−1→t+k is the change in log employment of firm f (in industry i)

in county c from year t − 1 to t + k. Peer Shockf(i),c,t denotes total heat shock at peer

establishments’ location as calculated in Equation (2). Industry Characteristici,t−1 denotes

high teleworking ability and tradability of industry i. We employ firm (αf(i)) and county-year

(αc,t) fixed-effects. Standard errors are clustered at the county level.
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Table 11: Establishment response to peer shock - Role of firm size

Panel (A): Employment growth

∆Log(Employment)t−1,t+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Peer Shock 0.633∗∗∗ 0.734∗∗∗ 1.024∗∗∗ 1.362∗∗∗ 1.653∗∗∗ 1.809∗∗∗

(0.019) (0.028) (0.038) (0.050) (0.061) (0.070)

Small Firm × Peer Shock -0.581∗∗∗ -0.170∗∗∗ -0.215∗∗∗ -0.322∗∗∗ -0.404∗∗∗ -0.222∗∗∗

(0.031) (0.043) (0.053) (0.060) (0.066) (0.070)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
County × Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 5,555,947 4,726,836 4,015,440 3,378,682 2,797,336 2,267,285
ȳ 0.770 1.785 2.424 3.214 3.899 4.748
Adj. R2 0.012 0.027 0.041 0.057 0.075 0.092

Panel (B): Job postings

Total Postings/L.Employmentt+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Peer Shock 0.828∗∗∗ 0.671∗∗∗ 0.577∗∗∗ 0.569∗∗∗ 0.478∗∗∗ 0.417∗∗∗

(0.037) (0.033) (0.034) (0.032) (0.032) (0.029)

Small Firm × Peer Shock -0.231∗∗∗ -0.083 0.146∗∗ 0.099 0.031 -0.025
(0.049) (0.053) (0.058) (0.064) (0.059) (0.057)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
County × Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 1,352,263 1,243,747 1,076,981 924,851 781,349 644,505
ȳ 7.048 7.342 7.632 8.032 8.312 8.610
Adj. R2 0.317 0.325 0.346 0.369 0.379 0.384

Notes: Table 11 shows how establishments of respond to heat shocks in their peer coun-

ties. Panel (A) shows the effect on employment growth and Panel (B) shows the effect on job

postings. The outcome variable in Panels (A) is ∆Log(Employment)f,c,t−1→t+k, which is the

change in log employment of firm f in county c from year t− 1 to t+ k. The outcome variable

in Panel (B) is ∆Total Postings/L.Employmentf,c,t+k, which is the total job-postings scaled

by previous year’s employment in year t+ k. Peer Shockc,t equals Log(1+# Hot Days, Other)

in county c in year t. We interact Peer Shock with indicator variables for whether the estab-

lishment belongs to a small firm. We employ firm (αf ), county (αc) and year (αt) fixed-effects.

Standard errors are clustered at the county level.
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Table 12: Climate clusters in affected counties

∆Log(Employment)t−1,t+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Panel (a): Heat stress (baseline)

Peer Shock 0.612∗∗∗ 0.728∗∗∗ 1.017∗∗∗ 1.352∗∗∗ 1.640∗∗∗ 1.803∗∗∗

(0.018) (0.027) (0.038) (0.049) (0.060) (0.069)

Panel (b): Acute heat stress

Peer Shock (Damages) 0.708∗∗∗ 0.920∗∗∗ 1.546∗∗∗ 1.822∗∗∗ 2.113∗∗∗ 2.014∗∗∗

(0.021) (0.031) (0.049) (0.057) (0.063) (0.068)

Panel (c): Heat spells

Peer Shock (Temporal) 0.594∗∗∗ 0.675∗∗∗ 0.937∗∗∗ 1.257∗∗∗ 1.540∗∗∗ 1.674∗∗∗

(0.017) (0.025) (0.035) (0.045) (0.054) (0.062)

Panel (d): Chronic heat stress

Peer Shock (Chronic) 0.771∗∗∗ 0.885∗∗∗ 1.196∗∗∗ 1.555∗∗∗ 1.824∗∗∗ 2.012∗∗∗

(0.021) (0.030) (0.041) (0.053) (0.063) (0.074)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
County × Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 5,556,578 4,727,432 4,015,976 3,379,161 2,797,759 2,267,637
ȳ 0.770 1.785 2.424 3.213 3.899 4.748

Notes: Table 12 shows mitigation in response to different types of heat shocks. We estimate
the following specification:

∆Log(Employment)f,c,t−1→t+k = δk × Peer Shock (Type)f,c,t + αf + αc,t + εf,c,t

∆Log(Employment)f,c,t−1→t+k is the change in log employment of firm f in county c from year

t − 1 to t + k. Peer Shockf,c,t (Panel (a)) denotes total heat shock at peer establishments’

location as calculated in Equation (2). Peer Shock (Damages)f,c,t (Panel (b)) denotes peer

shock calculated using hot days that were accompanied by non-zero property damage according

to SHELDUS. Peer Shock (Spells)f,c,t (Panel (c)) denotes peer shock calculated using hot days

that occurred in a consecutive spell of three or more days. Finally, Peer Shock (Chronic)f,c,t
(Panel (d)) denotes peer shock calculated using hot days occurring in counties suffering from

chronic heat stress. These counties lie in the top quintile of the distribution of the number

of hot days during the 1960-2008 period. We employ firm (αf ) and county-year (αc,t) fixed-

effects. Standard errors are clustered at the county level.
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Figure 5: Other climate hazards

(a) Combined with heat hazard
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Notes: Figure 5 shows firm mitigation in response to different types of climate disasters. The
regression equation we estimate is:

∆Log(Employment)f,c,t−1→t+k = δk × Peer Shock (Type)f,c,t + αf + αc,t + εf,c,t

∆Log(Employment)f,c,t−1→t+k is the change in log employment of firm f in county c from year t−1
to t+ k. In Panel (a), we calculate peer shock using the hot days that coincided with another type
of disaster in the same year. In panel (b), Peer Shock (Type)f,c,t denotes the peer shock calculated
using the annual number of days the peer counties suffered from a specific type of disaster. We
employ firm (αf ) and county-year (αc,t) fixed-effects. Standard errors are clustered at the county
level.
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Appendix A Firm-level results

First, we test whether local heat shocks have a measurable impact on firm-level accounting
measures using the following specification:

∆Outcomef,t−1→t+k = γk × Firm Shockf,t + αf + αt + εf,t

∆Outcomef,t−1→t+k is the change in financial outcomes of firm f from year t−1 to t+k. We
present results corresponding to 3-year change (i.e., k = 2). Firm Shockf,t is the exposure
of firm f to heat shocks in year t as defined in equation 5. αf and αt denote firm and year
fixed-effects respectively. Standard errors are clustered at the firm level.

Results are presented in Table A6. Perhaps unsurprisingly, we don’t find any significant
effects on profitability, ROA, or asset growth at firm-level, because individual shocks repre-
sents a relatively small fraction of an average firm’s total operations, and shocks have little
correlation across geographical locations.

Next, even if any individual heat shock is too small to have a significant effect on the
bottom-line of a geographically diversified firm, investors may learn from these episodes new
information about firm’s ability to conduct firm-wide climate adaptation measures in the
future, that may result in significant savings across locations as such episodes become more
frequent and costly in the future. To investigate this hypothesis, we study how the expected
returns on affected firms respond to shocks. We use SV IXf,t of Martin and Wagner (2019)
as our measure of conditional expected return.16

In particular, we estimate the following:

SVIXs,f,t =
h=6∑
h=−5

γh × Treateds,f,t−h × Posts,t−h + αs,f + αs,t + εf,t

SVIXs,f,t is Martin and Wagner (2019) measure of firm f ’s stock market performance in
month t. For each stack s, Treateds,f is an indicator variable that is one if firm f had one or
more establishments in the affected county, and zero otherwise. Posts,t−h is the event time
relative to the disaster. αf and αt denote firm and month fixed-effects respectively. Standard
errors are clustered at the firm level. Results are shown in Figure A4. In total, we find little
evidence that local heat shocks affect expected returns at firm-level.

16In addition to SV IXf,t, the conditional expected return measure of Martin and Wagner (2019) also
depends on SV IXt (SVIX of the market index), and SV IXt (the value-weighted average of SV IXf,t across
all the stocks in the market index). Since these measures are feasibly only available for the constituents of
S&P 500 index and we want to extend our sample to other firms as well, we only focus on SV IXf,t which
fully captures the cross-sectional variation in expected returns of Martin and Wagner (2019) measure.
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Appendix B Mitigation by varying distance from the

shock

We next explore the distance between heat-impacted establishment and the peer establish-
ments where the firms hire more workers. Examining the geographical distance at which
mitigation operates can shed light on the frictions that firms face in undertaking this activ-
ity. For example, if reallocation mostly occurs is regions far away from the impacted location,
it suggests that heat impact and its resulting damage may not be very localized. On the
other hand, if reallocation is limited to the vicinity of the shock, it may suggest that local
factors determining firms’ business inhibit them from changing their operating environment
drastically. Since firms bear the expenses related to mitigation, we then expect mitigation
activity to decay with distance from shock. To investigate this idea, we define alternative
distance-based peer shock variables as follows:

Peer Shockf,c,t,(d1,d2) = Log(1 + Hot Days, Otherf,c,t,(d1,d2))

where

# Hot Days, Otherf,c,t,(d1,d2) =
∑
c′ ̸=c

Employmentf,c′,t−2

Employmentf,c,t−2

×# Hot Daysc′,t×(I(Distance)c,c′ ∈ (d1, d2])

Here, I(Distance)c,c′ ∈ (d1, d2] denotes an indicator variable that equals one if the distance
between counties c and c′ lies between d1 and d2 miles, and zero otherwise. We then follow
our baseline specification and regress employment growth against these modified peer shock
measures for various distance bands. We present the corresponding results in Table A4. The
results highlight that employment growth is highest for the zero to 100 mile radius and then
generally decays with distance (with the exception of the largest distance band of 500 to 750
mile radius). These results are consistent with idea that mitigation becomes more expensive
with distance. It also suggests that local economic ties are important for firms. As a result,
they avoid moving their activity too far away from their original place of business in response
to heat shocks. On the flip side, these results also highlight the limitations associated with
spatial mitigation approach in dealing with climate risk.

Appendix C Salient examples of spatial reallocation

Small Companies (exactly two locations)

1. Heat wave in San Diego, CA 2016 (News Link): Fidelity Home Energy, Inc. (Construc-
tion) reduced 143 workers in San Diego (FIPS code: 6073) and added 47 workers in
Alameda (FIPS code: 6001).

2. Heat wave in Orange County, CA 2012 (News Link): Memorial Health Services Cor-
poration (Services) reduced 992 workers in Orange (FIPS code: 6059) and added 574
workers in Los Angeles (FIPS code: 6037).
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3. Heat wave in Harris County, TX 2018 (News Link): Nippon Shokubai America In-
dustries, Inc. (Manufacturing) reduced 107 workers in Harris (FIPS code: 48201) and
added 47 workers in Hamilton (FIPS code: 47065).

Large Companies (more than two locations)

1. Heat wave in Dallas County, TX 2016 (News Link): Walmart Inc. (Retail) reduced
1,952 workers in Dallas (FIPS code: 48113) and added 489 workers in Benton (FIPS
code: 5007).

2. Heat wave in Dallas County, TX 2012 (News Link): Home Depot Inc. (Retail) reduced
253 workers in Dallas (FIPS 48113) and added 51 workers in Maricopa (FIPS code:
4013), Polk (FIPS code: 12105), and Suffolk (FIPS code: 36103) counties.

3. Heat wave in Jackson County, MO 2012 (News Link): Honeywell International Inc.
(Manufacturing) reduced 104 workers in Jackson (FIPS 29095) and added 40 workers
in Pinellas (FIPS code: 12103) county.
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Appendix D Appendix figures and tables
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Table A1: Establishment response to own shock: Matched sample

∆Log(Employment)t−1,t+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Panel (A-1): Average establishment

Own Shock -0.070 -0.175 -0.174 -0.273∗∗ 0.012 0.027
(0.072) (0.112) (0.120) (0.134) (0.163) (0.147)

Panel (A-2): Establishments of single- vs. multi-location firms

Own Shock -0.088 -0.169 -0.110 -0.151 0.143 0.066
(0.073) (0.106) (0.109) (0.128) (0.161) (0.149)

Single Location × Own Shock 0.361 -0.121 -1.220∗ -2.345∗∗∗ -2.512∗∗∗ -0.775
(0.503) (0.608) (0.659) (0.747) (0.753) (0.799)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
County FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 1,391,478 1,215,641 1,056,100 906,274 763,981 628,700
ȳ 0.685 1.569 2.321 3.231 3.847 4.600

Total Postings/L.Employmentt+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Panel (B-1): Average establishment

Own Shock 0.038 0.182 0.217∗ 0.089 -0.222 -0.266∗∗

(0.103) (0.135) (0.119) (0.113) (0.146) (0.122)

Panel (B-2): Establishments of single- vs. multi-location firms

Own Shock 0.021 0.153 0.179 0.053 -0.265∗ -0.290∗∗

(0.107) (0.138) (0.118) (0.113) (0.146) (0.120)

Single Location × Own Shock 0.340 0.567∗∗ 0.760∗∗∗ 0.704∗∗∗ 0.865∗∗∗ 0.491∗∗

(0.223) (0.262) (0.244) (0.258) (0.192) (0.222)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
County FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 1,391,478 1,277,856 1,106,821 950,763 803,600 663,195
ȳ 7.027 7.334 7.623 8.016 8.292 8.587

Notes: Table A1 shows how establishments respond to heat shocks in their county using the D&B-

Burning Glass matched sample. Panel (A-1) shows the effect on employment growth at an average estab-

lishment, Panel (A-2) shows the effect on establishment growth at establishments of single- and multi-

location firms, and Panel (B) shows the effect on job postings. The outcome variable in Panels (A-1)

and (A-2) is ∆Log(Employment)f,c,t−1→t+k, which is the change in log employment of firm f in county

c from year t− 1 to t+ k. The outcome variable in Panel (B) is ∆Total Postings/L.Employmentf,c,t+k,

which is the total job-postings scaled by previous year’s employment in year t+k. Own Shockc,t equals

Log(1+# Hot Days) in county c in year t. We employ firm (αf ), county (αc) and year (αt) fixed-effects.

Standard errors are clustered at the county level.
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Table A2: Establishment response to peer shock: Matched sample

Panel (A): Employment growth of average establishment

∆Log(Employment)t−1,t+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Peer Shock 0.375∗∗∗ 0.380∗∗∗ 0.579∗∗∗ 0.804∗∗∗ 0.990∗∗∗ 1.023∗∗∗

(0.020) (0.031) (0.040) (0.050) (0.058) (0.067)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
County × Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 1,352,263 1,180,595 1,024,939 878,691 740,013 607,770
ȳ 0.640 1.432 2.076 2.885 3.480 4.210
Adj. R2 0.001 0.022 0.045 0.070 0.092 0.117

Panel (B): Job postings of average establishment

Total Postings/L.Employmentt+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Peer Shock 0.803∗∗∗ 0.663∗∗∗ 0.591∗∗∗ 0.577∗∗∗ 0.480∗∗∗ 0.415∗∗∗

(0.036) (0.033) (0.034) (0.033) (0.033) (0.029)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
County × Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 1,352,263 1,243,747 1,076,981 924,851 781,349 644,505
ȳ 7.048 7.342 7.632 8.032 8.312 8.610
Adj. R2 0.317 0.325 0.346 0.369 0.379 0.384

Notes: Table A2 shows how establishments respond to heat shocks in their peer coun-

ties using the D&B-Burning Glass matched sample. Panel (A) shows the effect on em-

ployment growth and Panel (B) shows the effect on job postings. The outcome variable

in Panels (A) is ∆Log(Employment)f,c,t−1→t+k, which is the change in log employment

of firm f in county c from year t − 1 to t + k. The outcome variable in Panel (B) is

∆Total Postings/L.Employmentf,c,t+k, which is the total job-postings scaled by previous year’s

employment in year t+k. Peer Shockc,t equals Log(1+# Hot Days, Other) in county c in year

t. We employ firm (αf ), county (αc) and year (αt) fixed-effects. Standard errors are clustered

at the county level.

55



Table A3: County response to own and peer shock

Panel (A): Wage growth

∆Log(Wage)t−1,t+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Own Shock 0.012 -0.142 -0.223 -0.098 -0.114 -0.096
(0.080) (0.116) (0.140) (0.164) (0.157) (0.128)

Peer Shock -0.064 0.221 0.294 0.848 0.803∗ 0.178
(0.211) (0.399) (0.599) (0.534) (0.430) (0.480)

County FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 28,732 25,846 22,970 20,093 17,221 14,343
ȳ 2.974 5.593 8.131 10.665 12.975 15.572
Adj. R2 0.035 0.094 0.190 0.321 0.479 0.610

Panel (B): Change in labor force participation rate

∆Labor force participation ratet+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Own Shock 0.059 -0.007 -0.098 -0.070 -0.017 0.039
(0.048) (0.056) (0.060) (0.066) (0.073) (0.073)

Peer Shock 0.050 0.071 0.125 0.213∗∗ 0.106 0.202∗

(0.038) (0.060) (0.080) (0.093) (0.124) (0.121)

County FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 28,050 25,392 22,551 19,723 16,899 14,079
ȳ -0.140 -0.284 -0.426 -0.578 -0.738 -0.887
Adj. R2 0.075 0.153 0.252 0.377 0.491 0.564

Notes: Table A3 shows outcomes in a county after heat shocks hit it and its peer counties.
We aggregate data at the county-year level and estimate the following specification:

∆Yc,t−1→t+k = β × Shockc,t + αc + αt + εc,t

∆Yc,t−1→t+k denotes the change in average annual wage of county c from year t − 1 to t +

k. Shockc,t is Own Shock (Log(1 + # Hot Daysc,t)) in Panels (A) and Peer Shock (Log(1 +

# Hot Days, Otherc,t)) in Panels (B), where # Hot Daysc,t is number of hot days in county c

in year t. We employ county (αc) and year (αt) fixed-effects. We cluster standard errors at

the county level.
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Table A4: Mitigation across varying distance from the shock

∆Log(Employment)t−1,t+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Peer Shock≤100 0.482∗∗∗ 0.680∗∗∗ 0.907∗∗∗ 1.072∗∗∗ 1.183∗∗∗ 1.330∗∗∗

(0.038) (0.053) (0.069) (0.085) (0.094) (0.108)

Peer Shock∈(100,250] 0.360∗∗∗ 0.449∗∗∗ 0.585∗∗∗ 0.735∗∗∗ 0.828∗∗∗ 0.837∗∗∗

(0.027) (0.037) (0.047) (0.060) (0.074) (0.086)

Peer Shock∈(250,500] 0.251∗∗∗ 0.259∗∗∗ 0.363∗∗∗ 0.475∗∗∗ 0.531∗∗∗ 0.535∗∗∗

(0.018) (0.026) (0.035) (0.045) (0.055) (0.065)

Peer Shock∈(500,750] 0.384∗∗∗ 0.429∗∗∗ 0.591∗∗∗ 0.781∗∗∗ 0.901∗∗∗ 0.967∗∗∗

(0.018) (0.027) (0.037) (0.051) (0.061) (0.071)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
County × Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 5,556,578 4,727,432 4,015,976 3,379,161 2,797,759 2,267,637
ȳ 0.770 1.785 2.424 3.213 3.899 4.748
Adj. R2 0.012 0.027 0.042 0.057 0.075 0.092

Notes: Table A4 shows employment mitigation by firms at varying distances from the shock.
We estimate the following regression equation:

∆Log(Employment)f,c,t−1→t+k =
∑

(d1,d2)

δk(d1,d2) × Peer Shockf,c,t,(d1,d2) + αf + αc,t + εf,c,t

∆Log(Employment)f,c,t−1→t+k is the change in log employment of firm f in county c from

year t− 1 to t+ k. Peer Shockf,c,t,(d1,d2) denotes peer shock calculated using hot days at peer

establishments located between d1 and d2 miles away from county c. We employ firm (αf ) and

county-year (αc,t) fixed-effects. Standard errors are clustered at the county level.
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Figure A1: Role of other (non-heat-related) county characteristics

(a) Negative GDP growth
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(b) Low bank presence
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(c) High HHI
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(d) High Enforceability
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Notes: Figure A1 shows the county-level factors that influence firms’ decision to reallocate into
that county when its establishments elsewhere are impacted by heat shocks. We estimate

∆Log(Employment)f,c,t−1→t+k = δk × Peer Shockf,c,t × County Characteristicc,t

+ γkPeer Shockf,c,t + αf + αc,t + εf,c,t

and plot the interaction coefficient (δk) with respect to each county characteristic. αf and αc,t

denote firm and county-year fixed-effects and standard errors are clustered at the county level.
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Figure A2: Firm mitigation: Estimation using distributed lag model
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Notes: Figure A2 shows the impact of heat stress on the employment growth at peer locations.
We estimate the following distributed lag specification:

∆Log(Employment)f,c,t−1→t =
h=5∑
h=0

βh × Peer Shockf,c,t−h + αf,t + αc,t + εf,c,t

∆Log(Employment)f,c,t−1→t is the change in log employment of firm f in county c from year t− 1
to t. Peer Shockf,c,t−h denotes the value of peer shock h years ago. We employ firm-year (αf,t) and
county-year (αc,t) fixed-effects. Standard errors are clustered at the county level. The figure plots

the cumulative coefficients, i.e.,
∑h=k

h=0 β
h against years relative to the shock (k).
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Table A5: Establishment response to own shock: Role of firm size

∆Log(Employment)t−1,t+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Single-Location/Small × Own Shock -0.213 -0.935 -2.298∗∗ -4.499∗∗∗ -5.350∗∗∗ -4.209∗∗∗

(0.346) (0.700) (0.925) (1.084) (0.953) (0.762)

Single-Location/Large × Own Shock 0.367 -0.076 -1.074∗ -1.487∗∗ -2.432∗∗∗ -1.545∗∗

(0.449) (0.563) (0.640) (0.655) (0.665) (0.626)

Multi-Location/Small × Own Shock -0.743∗∗∗ -1.299∗∗∗ -1.704∗∗∗ -2.412∗∗∗ -2.797∗∗∗ -2.780∗∗∗

(0.173) (0.284) (0.355) (0.400) (0.418) (0.429)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
County × Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 5.66e+06 4.83e+06 4.11e+06 3.46e+06 2.87e+06 2.33e+06
ȳ 0.802 1.898 2.619 3.489 4.190 5.072
Adj. R2 0.011 0.031 0.050 0.071 0.093 0.119

Total Postings/L.Employmentt+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Single-Location/Small × Own Shock 0.176 0.600∗∗ 0.769∗∗∗ 0.582∗∗ 0.587∗∗ 0.022
(0.293) (0.300) (0.290) (0.269) (0.234) (0.311)

Single-Location/Large × Own Shock 0.513∗ 0.420 0.610∗ 0.881∗∗∗ 1.077∗∗∗ 0.938∗∗∗

(0.285) (0.403) (0.350) (0.316) (0.298) (0.292)

Multi-Location/Small × Own Shock -0.031 0.050 -0.051 -0.072 -0.199 -0.278
(0.137) (0.142) (0.149) (0.165) (0.181) (0.176)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
County × Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 1.39e+06 1.28e+06 1.11e+06 9.50e+05 8.03e+05 6.62e+05
ȳ 7.030 7.338 7.626 8.020 8.296 8.592
Adj. R2 0.320 0.329 0.350 0.372 0.381 0.386

Notes: Table A5 shows how establishments of respond to heat shocks in their county. Panel (A) shows

the effect on employment growth and Panel (B) shows the effect on job postings. The outcome variable in

Panels (A) is ∆Log(Employment)f,c,t−1→t+k, which is the change in log employment of firm f in county

c from year t− 1 to t+ k. The outcome variable in Panel (B) is ∆Total Postings/L.Employmentf,c,t+k,

which is the total job-postings scaled by previous year’s employment in year t+k. Own Shockc,t equals

Log(1+# Hot Days) in county c in year t. We interact Own Shock with indicator variables for whether

the establishment belongs to a single-location firm, and whether it belongs to a small firm. We employ

firm (αf ) and county × year (αc,t) fixed-effects. Standard errors are clustered at the county level.
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Figure A3: Migration

(a) Own Shock
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(b) Peer Shock
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Notes: Figure A3 shows the impact of heat shocks on employment-related migration. We aggregate
the data at the household level and estimate the following regression:

In-Migrationh,c,t = γk × Shockc,t−k + αD + αc + αt + ϵw,c,t

In-Migrationw,c,t is an indicator that equals one if any member of the household h residing in
county c in year t migrated into their current location for a work-related reason during the previous
year. Shockc,t−k denotes the own shock (Panel (a)) and peer shock (Panel (b)) variables at the
county level. We employ fixed-effects at the demographic (i.e., age, sex, race, hispanic status, and
education), county, and year level (denoted by αD, αc, and αt, respectively). We use CPS weights
to estimate weighted regression coefficients and cluster standard errors at the county level.
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Figure A4: Impact of heat shocks on stock market performance
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Notes: Figure A4 shows the impact of heat shocks on the stock market performance of public
firms. We aggregate the data at the stack-firm-month level where each stack s correspond to a
heat-related shock at the county level. We estimate the following stacked event-study regression:

SVIXs,f,t =
h=6∑
h=−5

γh × Treateds,f,t−h × Posts,t−h + αs,f + αs,t + εf,t

SVIXs,f,t is the Martin-Wagner measure of firm f ’s stock market performance in month t. For each
stack s, Treateds,f is an indicator variable that is one if firm f had one or more establishments in
the affected county, and zero otherwise. Posts,t−h is the event time relative to the disaster. αf and
αt denote firm and month fixed-effects respectively. Standard errors are clustered at the firm level.
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Table A6: Effect on firm financials for public firms

∆ROA ∆Gross Profit ∆Log(Assets)

Firm Shock 0.001 0.005 -0.011
(0.004) (0.004) (0.010)

Firm FE ✓ ✓ ✓
Year FE ✓ ✓ ✓
Observations 13,820 13,833 14,512
ȳ -0.003 -0.008 0.192
Adj. R2 0.147 0.175 0.431

Notes: Table A6 shows the effect of heat shocks on financials of public firms. The regression
equation we estimate is:

∆Outcomef,t−1→t+k = γk × Firm Shockf,t + αf + αt + εf,t

∆Outcomef,t−1→t+k is the change in financial outcomes of firm f from year t − 1 to t + k.

We present results corresponding to 3-year change (i.e., k = 2). Firm Shockf,t is the exposure

of firm f to heat shocks in year t as defined in equation 5. αf and αt denote firm and year

fixed-effects respectively . Standard errors are clustered at the firm level.
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Table A7: Robustness: County-level results using QCEW data

Panel (A): ∆Log(Employment)t−1,t+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Own Shock 0.136∗ 0.167 0.169 0.068 0.220 0.239
(0.073) (0.121) (0.153) (0.175) (0.179) (0.152)

Peer Shock 0.602∗∗∗ 0.931∗∗ 1.422∗∗ 1.716∗∗ 1.685∗∗ 1.129∗

(0.188) (0.442) (0.669) (0.874) (0.854) (0.585)

Panel (B): ∆Log(Establishments)t−1,t+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Own Shock -0.002 0.036 0.009 0.171 0.088 0.148
(0.060) (0.106) (0.141) (0.158) (0.150) (0.133)

Peer Shock 0.325∗∗ 0.688∗∗∗ 0.741∗∗ 0.897∗∗∗ 0.898∗∗ 1.138∗∗∗

(0.128) (0.227) (0.299) (0.344) (0.350) (0.367)

County FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 30,412 27,339 24,276 21,212 18,153 15,087
ȳ 0.585 1.191 1.748 2.262 2.886 3.465
Adj. R2 0.071 0.184 0.305 0.441 0.588 0.708

Notes: Table A7 shows outcomes in a county after heat shocks hit it and its peer counties
using data from Quarterly Census of Employment and Wages (QCEW). We aggregate data at
the county-year level and estimate the following specification:

∆Yc,t−1→t+k = β × Shockc,t + αc + αt + εc,t

∆Yc,t−1→t+k denotes the change in employment (Panel (A)) or number of establishments (Panel

(B)) of county c from year t−1 to t+k. Shockc,t is Own Shock (Log(1+# Hot Daysc,t)) or Peer

Shock (Log(1 + # Hot Days, Otherc,t)). We employ county (αc) and year (αt) fixed-effects.

We cluster standard errors at the county level.
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Table A8: Impact of county characteristics (affected county)

∆Log(Employment)t−1,t+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Panel (A): Community Risk

Peer Shock 0.111∗∗∗ 0.299∗∗∗ 0.416∗∗∗ 0.728∗∗∗ 0.771∗∗∗ 0.782∗∗∗

(0.025) (0.038) (0.045) (0.060) (0.070) (0.078)

Peer Shock (High 0.592∗∗∗ 0.509∗∗∗ 0.706∗∗∗ 0.723∗∗∗ 1.011∗∗∗ 1.184∗∗∗

Vulnerability/Low Resilience) (0.026) (0.036) (0.048) (0.055) (0.069) (0.087)

Panel (B): Unionization

Peer Shock 0.306∗∗∗ 0.477∗∗∗ 0.679∗∗∗ 1.093∗∗∗ 1.301∗∗∗ 1.620∗∗∗

(0.019) (0.031) (0.047) (0.062) (0.076) (0.092)

Peer Shock (High 0.383∗∗∗ 0.315∗∗∗ 0.419∗∗∗ 0.312∗∗∗ 0.411∗∗∗ 0.216∗∗

Union Membership) (0.023) (0.034) (0.049) (0.058) (0.072) (0.086)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
County-Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 5,556,578 4,727,432 4,015,976 3,379,161 2,797,759 2,267,637
ȳ 0.770 1.785 2.424 3.213 3.899 4.748
Adj. R2 0.012 0.027 0.042 0.057 0.075 0.093

Notes: Table A8 shows mitigation in response to different types of heat shocks. We estimate
the following specification:

∆Log(Employment)f,c,t−1→t+k =
∑
Type

δk,Type × Peer ShockTypef,c,t + αf + αc,t + εf,c,t

∆Log(Employment)f,c,t−1→t+k is the change in log employment of firm f in county c from

year t− 1 to t+ k. Peer ShockTypef,c,t denotes peer shock calculated using hot days across (a) all

peer counties, (b) peer counties with high community risk factor (high social vulnerability/low

community resilience) according to FEMA Risk Index data, and (c) peer states with above-

median union membership rate. We employ firm (αf ) and county-year (αc,t) fixed-effects.

Standard errors are clustered at the county level.
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Table A9: Reallocation with Heat-Related Injuries/Fatalities

∆Log(Employment)t−1,t+k × 100

k=+0 k=+1 k=+2 k=+3 k=+4 k=+5

Peer Shock (Without Injuries) 0.560∗∗∗ 0.685∗∗∗ 0.918∗∗∗ 1.140∗∗∗ 1.389∗∗∗ 1.580∗∗∗

(0.017) (0.027) (0.037) (0.046) (0.057) (0.068)

Peer Shock (With Injuries) 0.210∗∗∗ 0.199∗∗∗ 0.314∗∗∗ 0.508∗∗∗ 0.606∗∗∗ 0.578∗∗∗

(0.016) (0.023) (0.031) (0.042) (0.055) (0.070)

Firm FE ✓ ✓ ✓ ✓ ✓ ✓
County × Year FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 5,555,947 4,726,836 4,015,440 3,378,682 2,797,336 2,267,285
ȳ 0.770 1.785 2.424 3.214 3.899 4.748
Adj. R2 0.012 0.027 0.042 0.058 0.075 0.093

Notes: Table A9 shows the results of our baseline specification using peer shocks with varying
degrees of workplace injuries/fatalities. Here, we focus on workplace injuries/fatalities likely
caused by heat stress. We estimate the following specification:

∆Log(Employment)f,c,t−1→t+k = δk × Peer Shock (Without Injuries)f,c,t

+ γk × Peer Shock (With Injuries)f,c,t + αf + αc,t + εf,c,t

∆Log(Employment)f,c,t−1→t+k is the change in log employment of firm

f in county c from year t-1 to t+k. Peer Shock (Without Injuries)f,c,t
is equal to Log(1+# Hot Days (Other, Without Injuries)f,c,t) where

# Hot Days(Other, Without Injuries)c,t is the total number of SHELDUS hot days in

peer counties that did not feature any workplace injuries or fatalities (as per the OSHA

data). Peer Shock (With Injuries)f,c,t corresponds to hot days accompanied by workplace

injuries/fatalities in the county. We employ firm (αf ) and county-year (αc,t) fixed-effects.

Standard errors are clustered at the county level.
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