The Causal Effects of Climate Investment Subsidies: Regression Discontinuity Evidence from Swedish Firms

Shon Ferguson¹ Johanna Nolgren¹

¹Department of Economics, Swedish University of Agricultural Sciences (SLU)

25 November 2024

◆□▶ ◆圖▶ ★필▶ ★필▶ - ヨー のへで

Introduction

- Subsidies to reduce emissions less common than carbon pricing
- Open question whether abatement subsidies are an effective climate policy tool
- Potential lack of "additionality"
- Few rigorous studies

Research question

- We evaluate the causal effects of a Swedish subsidy scheme: Klimatklivet
 - Swedish for "the climate leap"
 - One of Sweden's major policies targeting GHG emissions
- We exploit discontinuities in the assignment mechanism in the program during 2016 and 2017
- Estimate impact on investment and firm growth

Related Literature

- Firm-level investment additionality in GHG context
 - Calel et al. (2024), Marino et al. (2021)
- Individual- and household-level studies
 - EV subsidies, home energy efficiency programs
- Additionality of R&D investment grants
 - Santoleri et al. (2022), Howell (2017)

< ∃ >

Studies of Klimatklivet

- Consultant reports descriptive
 - Isberg et al. (2017), Pädam et al. (2021)
- National Audit Office (RiR 2019:1) cost-ineffective
- Ferguson and Nolgren (2024) self-selection

Preview of results

- RD design is valid
- Significant effects on investment, turnover, number of employees
- Back-of-the-envelope calcs: Ex-post firm investment > subsidy

э

Sweden's climate investment subsidy scheme

- Awarded SEK 14.8 billion in grants 2015-2023
- Subsidized 41 percent of total investment costs
- Goal: Fund investment products with highest CO2e emission reductions per invested SEK
- Firms and other organizations eligible
- 2–4 application rounds per year

Klimatklivets project criteria

- Cannot be profitable in less than five years
- Cannot qualify for certificate system for renewable electricity production
- Cannot commence before being granted funding
- Cannot be covered by EU ETS
- CO2e reduction per invested SEK must exceed minimum threshold

Threshold levels and timing of application rounds, 2015–2017

Application round	Threshold, kg CO2e/SEK	Application period
2015:1	1.00	Jun 29 – Sep 15
2015:2	1.00	Nov – Dec 17
2016:1	0.75	Feb 15 –Mar 14
2016:2	1.00	May 16 – Jun 13
2016:3	1.00	Aug 29 – Sep 26
2017:1	1.00	Jan 9 – Jan 31
2017:2	0.75	Mar 10 – Apr 3
2017:3	0.75	Aug 7 – Sep 11
2017:4	0.75	Oct 9 – Nov 9

Regression Discontinuity Methodology

- Idea: compare observations just above vs. just below threshold
- $\bullet\,$ Tradeoff between comparability and N
- ± 0.249 bandwidth doesn't overlap with previous round's threshold

 $y_i = \beta_0 + \beta_1 granted_i + f(CO2perSEK_i) + \beta_2 y_i^{pre} + \lambda_{round} + \lambda_{category} + \lambda_{ind} + \epsilon_i$ (1)

Data

- Application data (KlivIT)
 - Source: Swedish EPA
 - Detailed data for granted and rejected applications
- Firm-level balance sheet register data (LISA)
 - Source: Statistics Sweden
 - Annual longitudinal data
 - Covers all firms in Sweden
 - investment, turnover, employees, etc.

э

- Restrict sample to granted applications and applications rejected solely on CO2e/SEK metric
- Firms with at least one employee one year before and after application
- After merge with firm-level data: 406 applications
 - 198 granted
 - 208 rejected

э

Application descriptive statistics

Variables	Obs.	Mean	SD	p10	Median	р90																							
Requested subsidy, SEK thousands																													
Granted	198	1235	2739	26	300	2970																							
Rejected	208	1562	3233	70	291	4100																							
Total	406	1403	3003	40	300	4100																							
Total cost of investment, SEK thousands																													
Granted	198	2405	6090	53	562	5940																							
Rejected	208	2934	6903	120	568	6100																							
Total	406	2676	6517	80	568	6100																							
Subsidy fraction of investment in percent																													
Granted	198	55	18	40	50	92																							
Rejected	208	57	21	37	50	100																							
Total	406	56	19	40	50	100																							
kg CO2e reductions per invested SEK																													
Granted	198	4.96	10.46	0.72	1.25	14.11																							
Rejected	208	0.34	0.23	0.00	0.29	0.65																							
Total	406	2.59	7.65	0.11	0.65	3.47			_	_	_	_	_	_	_	_	_												
						_ < ⊟} ∢	-≣ ▶	•	< ≣ >	< ≣ >	< 差 ▶	< 문 ▶	< ≣ >	< ≣ ►	< ≣ >	< ≣ ►	▲ 문 ▶ - 극	▲ 문 ▶ - 극	▲ 문 ▶ ~ 4	▲ 문 ▶ ~ 극	▲ 문 ▶ - 극	▲ 문 ▶ - 극	▲ 문 ▶ ~ 극	▲ 문 ▶ - 극	▲ 문 ▶ -	▲ 문 ▶	* 문 * - 분	▲ 문 ▶ 문	▲ 문 ▶ 문

Ferguson & Nolgren (SLU)

Effects of Climate Investment Subsidies

25 November 2024

Number of rejected and granted applications by project category

Category description	Rejected	Granted	Total
Charging stations	120	103	223
Energy conversion	21	61	82
Energy efficiency	25	3	28
Transport	1	25	26
Vehicles	7	0	7
Information	6	0	6
Gas emissions	1	3	4
Biogas production	2	2	4
Infrastructure	2	1	3
Other	23	0	23
Total	208	198	406

Number of applications by project length, in calendar years

Project length (years)	Number of applications
0	130
1	143
2	111
3	18
4	3
5	1
Total	406

Firm descriptive statistics

Variables	Gra	nted	Reje	ected	T-test, equ	al means
(SEK millions unless noted)	Mean	Median	Mean	Median	Difference	p-value
Total Investment	66.9	17.5	62.5	11.4	-4.40	0.781
Machinery Investment	31.0	6.6	31.1	4.4	0.06	0.992
Employees	198.7	40.0	224.8	40.0	26.10	0.571
Turnover	1035.9	239.9	1286.4	155.8	250.46	0.247
Profit	76	16	138	13	61.93	0.060
Fixed Assets	1235.0	129.0	1788.2	36.9	553.25	0.297
Age	18.4	21.0	15.8	17.0	-2.67**	0.001
Observations	198		208		406	

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 25 November 2024

э

Histogram of running variable and manipulation test based on original applications to Swedish EPA

Ferguson & Nolgren (SLU)

Effects of Climate Investment Subsidie

25 November 2024

Histogram of running variable and manipulation, adjusted by Swedish EPA

Ferguson & Nolgren (SLU)

Effects of Climate Investment Subsidies

25 November 2024

RD plots for outcomes, pre-grant

Ferguson & Nolgren (SLU)

Effects of Climate Investment Subsidies

→ ∃ →

< ∃ >

э

< (□)

RD plots for outcomes, pre vs. post changes

Ferguson & Nolgren (SLU)

Effects of Climate Investment Subsidies

25 November 2024

Effects on Total Investment

	Log grow	th, $t-1$ vs $t+1$	As share	of fixed assets
	(1)	(2)	(3)	(4)
$RD_Estimate$	-0.06	0.15	0.05	0.07
	(0.13)	(0.17)	(0.07)	(0.07)
Polynomial	Linear	Quadratic	Linear	Quadratic
Observations	295	295	316	316

Panel A: All observations

Panel B: ± 0.249 bandwidth

	Log growt	h, $t-1$ vs $t+1$	As share of fixed assets		
	(1)	(2)	(3)	(4)	
RD_Estimate	0.35***	0.49***	0.11*	0.14**	-
	(0.12)	(0.16)	(0.06)	(0.07)	
Polynomial	Linear	Quadratic	Linear	Quadratic	
Observations	82	82	86	86	
				< 🗆	→ < @ > < ≥ > <

Ferguson & Nolgren (SLU)

Effects of Climate Investment Subsidies

25 November 2024

Effects on Machinery Investment

Tuner / t. / til O											
	Log grow	th, $t-1$ vs $t+1$	As share	of fixed assets							
	(1)	(2)	(3)	(4)							
RD_Estimate	0.11 (0.15)	0.26 (0.21)	0.05 (0.07)	0.08 (0.06)							
Polynomial Observations	Linear 283	Quadratic 283	Linear 308	Quadratic 308							

Panel A: All observations

Panel B: ± 0.249 bandwidth

	Log growt	h, $t-1$ vs $t+1$	As share of fixed asset	
	(1)	(2)	(3)	(4)
RD_Estimate	0.66***	0.57***	0.11*	0.16**
	(0.11)	(0.11)	(0.06)	(0.08)
Polynomial	Linear	Quadratic	Linear	Quadratic
Observations	78	78	85	85

Ferguson & Nolgren (SLU)

Effects of Climate Investment Subsidie

25 November 2024

▶ ★ 臣 ▶ ★ 臣 ▶

Firm-level Investment Additionality: Crowding in or crowding out?

- Total net investment: 12-15 percent increase
- Machinery net investment: 12–17 percent increase
- Pre-grant mean machinery investment: SEK 31 million
- Implies that investment increased by between SEK 3.7-4.7 million
- Compare with mean investment size: SEK 2.4 million

Further Results

- Positive effects on turnover and the number of employees firm expansion
- No detectable effects on fixed assets puzzling
 - Stock of fixed assets relatively large compared to annual total investment (SEK 1.24 billion versus SEK 67 million)
- Lack of an effect on firm profits not surprising since profitable projects not eligible

Effects on the Number of Employees

Fallel A. All 0	Fallel A. All observations										
	Log t-1	$\begin{array}{l} \text{Log growth,} \\ t-1 \text{ vs } t+1 \end{array}$		growth, project end	Log e at pr	employees oject end					
	(1)	(2)	(3)	(4)	(5)	(6)					
RD_Estimate	0.12 (0.15)	0.05 (0.09)	0.08 (0.13)	0.06 (0.08)	0.10 (0.13)	0.10 (0.09)					
Polynomial Observations	Linear 406	Quadratic 406	Linear 403	Quadratic 403	Linear 403	Quadratic 403					

Panel B: ± 0.249 bandwidth

Devel A. All shares etters

	Log growth, $t-1$ vs $t+1$		$\begin{array}{c} {\rm Log \ growth,} \\ t-1 \ {\rm vs \ project \ end} \end{array}$		Log er at pro	Log employees at project end	
	(1)	(2)	(3)	(4)	(5)	(6)	
$RD_{-}Estimate$	0.45*** (0.15)	* 0.43*** (0.16)	0.43*** (0.13)	0.42*** (0.14)	0.45*** (0.15)	* 0.47*** (0.16)	
Polynomial Observations	Linear 115	Quadratic 115	Linear 115	Quadratic 115	Linear 115	Quadratic 115	
						4 D b	

Ferguson & Nolgren (SLU)

Effects of Climate Investment Subsidies

25 November 2024

(E)

Effects on Turnover

	Log t-1	growth, vs $t+1$	Log growth, $\underline{t-1}$ vs project end		rowth, Log growt s $t+1$ $t-1$ vs project		Log at pr	turnover oject end
	(1)	(2)	(3)	(4)	(5)	(6)		
RD_Estimate	0.12	0.15	0.13	0.18	0.16	0.20		
	(0.12)	(0.12)	(0.11)	(0.12)	(0.11)	(0.12)		
Polynomial	Linear	Quadratic	Linear	Quadratic	Linear	Quadratic		
Observations	404	404	403	403	403	403		

Panel A: All observations

Panel B: ± 0.249 bandwidth

	Log growth, $t-1$ vs $t+1$		Log growth, $t-1$ vs project end		Log turnover at project end	
	(1)	(2)	(3)	(4)	(5)	(6)
RD_Estimate	0.40***	0.50***	0.43***	0.53***	0.50***	0.68***
	(0.11)	(0.12)	(0.11)	(0.12)	(0.13)	(0.13)
Polynomial	Linear	Quadratic	Linear	Quadratic	Linear	Quadratic
Observations	115	115	115	115	115	115
						< □ ▶

Ferguson & Nolgren (SLU)

Effects of Climate Investment Subsidies

25 November 2024

Effects on Profits

	Log	growth,	Log	growth,	Log profit		
	t-1 vs $t+1$		t-1 vs	s project end	at project end		
	(1)	(2)	(3)	(4)	(5)	(6)	
RD_Estimate	-0.03 (0.08)	-0.04 (0.11)	0.05 (0.06)	-0.04 (0.08)	0.00 (0.07)	-0.08 (0.10)	
Polynomial Observations	Linear 328	Quadratic 328	Linear 325	Quadratic 325	Linear 325	Quadratic 325	

Panel A: All observations

Panel B: ± 0.249 bandwidth

	Log t-1	Log growth, $t-1$ vs $t+1$		Log growth, $t-1$ vs project end		g profit oject end
	(1)	(2)	(3)	(4)	(5)	(6)
RD_Estimate	-0.15 (0.11)	-0.09 (0.11)	0.12 (0.09)	0.14 (0.11)	0.13 (0.09)	0.15 (0.11)
Polynomial Observations	Linear 82	Quadratic 82	Linear 82	Quadratic 82	Linear 82	Quadratic 82
						Image: A marked block in the second secon

Ferguson & Nolgren (SLU)

Effects of Climate Investment Subsidies

25 November 2024

< 注入 < 注入 -

Effects on Fixed Assets

	Log growth, $t-1$ vs $t+1$		Log growth, $t-1$ vs project end		Log fixed assets at project end	
	(1)	(2)	(3)	(4)	(5)	(6)
RD_Estimate	-0.02	-0.02	0.03	0.09	0.08	0.14*
	(0.05)	(0.05)	(0.07)	(0.06)	(0.08)	(0.09)
Polynomial	Linear	Quadratic	Linear	Quadratic	Linear	Quadratic
Observations	375	375	375	375	375	375

Panel A: All observations

Panel B: ± 0.249 bandwidth

	Log growth, $t-1$ vs $t+1$		Log growth, $t-1$ vs project end		Log fixed assets at project end	
	(1)	(2)	(3)	(4)	(5)	(6)
RD_Estimate	-0.03 (0.06)	0.00 (0.07)	-0.15 (0.11)	-0.17 (0.14)	-0.17 (0.12)	-0.19 (0.14)
Polynomial Observations	Linear 111	Quadratic 111	Linear 112	Quadratic 112	Linear 112	Quadratic 112
						Image: A mathematical states and the states and

Ferguson & Nolgren (SLU)

Effects of Climate Investment Subsidies

25 November 2024

Placebo Tests

Panel A: Total investment

	Log grow	th, $t-1 \ { m vs} \ t+1$	As share of fixed assets		
	(1)	(2)	(3)	(4)	
runningvar -0.05	0.16	0.25	-0.05	0.03	
	(0.31)	(0.36)	(0.07)	(0.09)	
runningvar+0.05	-0.14	-0.63***	0.05	-0.08	
	(0.14)	(0.19)	(0.08)	(0.13)	
Polynomial	Linear	Quadratic	Linear	Quadratic	

Panel A: Employment

	Log growth, $t-1$ vs $t+1$		Log t-1 vs	growth, project end	Log employees at project end	
	(1)	(2)	(3) (4)		(5)	(6)
${\sf runningvar}{-}0.05$	0.12	0.28	0.03	0.12 (0.18)	0.05	0.16 (0.20)
$runningvar{+}0.05$	0.06 (0.22)	-0.14 (0.21)	0.07 (0.19)	-0.07 (0.19)	0.05 (0.21)	-0.09 (0.20)
Polynomial	Linear	Quadratic	Linear	Quadratic	Linear	Quadratic

Panel B: Machinery investment

	Log grow	rth, $t-1$ vs $t+1$	As share of fixed assets		
	(1)	(2)	(3)	(4)	
runningvar -0.05	0.17	-1.10**	-0.02	0.09	
	(0.37)	(0.46)	(0.07)	(0.10)	
runningvar+0.05	-0.22	-0.12	-0.02	-0.06	
	(0.13)	(0.27)	(0.10)	(0.15)	
Polynomial	Linear	Quadratic	Linear	Quadratic	

Panel B: Turnover

	Log t-1	Log growth, $t-1$ vs $t+1$		growth, project end	Log employees at project end	
	(1)	(2)	(3)	(4)	(5)	(6)
runningvar -0.05	0.04 (0.14)	0.33 (0.23)	-0.10 (0.13)	0.05 (0.20)	-0.10 (0.15)	0.11 (0.25)
runningvar+0.05	-0.01 (0.17)	-0.02 (0.19)	0.05 (0.16)	0.09 (0.17)	-0.01 (0.18)	0.04 (0.20)
Polynomial	Linear	Quadratic	Linear	Quadratic	Linear	Quadratic

< □ > < □ > < □ > < □ > < □ > < □ > < □ >
 25 November 2024

Conclusion

- Evaluate a Swedish grant scheme for local climate investments
- Identify causal effects of receiving a grant
- Evidence of investment additionality, particularly machinery investments

• • = • • = •

э

Comments welcome! shon.ferguson@slu.se

э