Delegated Blocks

Amil Dasgupta

London School of Economics and ECGI

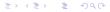
Rich Mathews

University of Maryland

August 2024 SHoF Conference on Corporate Governance

The economics of delegated blockholding

- Risk-sharing in financial markets ⇒ large entities with high risk-bearing capacity should hold large equity blocks
 - This should induce them to **monitor**.... better corporate governance.
- Rise of asset managers: capital concentrated in hands of big funds (Dasgupta, Fos, Sautner FnT 2021)
- Simple intuition: Good for governance
 - Big funds = high risk-bearing capacity
 - More large traders, more large blocks, more monitoring!
- But, if you think about it, the answer is not obvious:
 - Block sizes and monitoring are endogenous to the contractual incentives of fund managers.
 - Such contractual incentives are endogenously determined and anticipate ownership and monitoring decisions.
- We study the economics of delegated blockholding.



A key benchmark

- Benchmark: Admati, Pfleiderer, Zechner (1994) study the economics of proprietary long-term blockholding:
 - Assume the existence of large proprietary trader with exogenously high risk-bearing capacity.
 - But observe that <u>holdings are a choice</u> and <u>monitoring is a</u> public good.
 - They ask: will anticipated monitoring costs limit this (exogenously) large trader's willingness to hold large blocks?
 - Their answer: "no"—large trader with high risk-bearing capacity will risk-share optimally (i.e., build up a large block) and (therefore) monitor a lot.
 - In other words, the simple intuition of the opening slide is actually correct (albeit for not so simple reasons!)

Preview of results

- When traders with high risk-bearing capacity emerge endogenously via delegation, a lot changes!
 - The simple intuition of the opening slide no longer applies in today's market
 - 1 The **optimal** fund holds **sub**optimally small blocks
 - A big asset manager may have a high risk-bearing capacity, but doesn't use it!
 - The optimal fund monitors (way) too little
 - Not only do they hold "too small" blocks, they monitor "as if" they held even smaller blocks!
 - Benchmarks, benchmarks...
 - Delegated economy is worse than one with exogenously large proprietary owners... but better than one without large proprietary traders and no delegation.
 - Endogenous asset management contracts... features of real world asset managent firms.
 - Empirical implications for blockholder monitoring.

Model: Assets, Investors, Timeline

- A firm with unit mass of equity shares and Gaussian cash flows
- A risk-free asset in perfectly elastic supply with unit return
- A unit continuum of infinitesimal traders with CARA utility, each with risk tolerance of ρ .
 - A measure λ (exogenously) aggregated into positive-measure strategic entity L
 - L has endowment of shares $\omega \leq \lambda$
 - ullet The remaining measure $1-\lambda$ trade competitively
 - \bullet They share equally an aggregate endowment of $1-\omega$
- Timeline:
 - Date 1: (notable variation) Arbitrary # of rounds of trading in Walrasian market
 - Date 2: (notable variation) L can **monitor** at intensity m resulting in equity cash flow $N\left(\mu(m),\sigma^2\right)$, where $\mu'>0$, $\mu''<0$ at cost c(m) with c'>0, c''>0
 - Date 3: Cash flows realized

Competitive Equilibrium Allocation

Perfect Risk Sharing

- CARA Normal model: the aggregate risk tolerance of a measure of infinitesimal competitive agents is proportionate to the measure of those agents.
 - The aggregate risk tolerance of competitive investors is $\rho(1-\lambda)$
 - The (aggregate) risk tolerance of L is equal to $\rho\lambda$
- A competitive allocation with perfect risk sharing involves
 - allocating λ measure of shares to L
 - 1λ equally distributed among the other agents

No commitment to monitoring or trading strategies

- L can't commit to monitoring level, so L's monitoring m is determined by final stake, α .
- The optimal level of monitoring is given by

$$\alpha \mu'(\mathsf{m}(\alpha)) = \mathsf{c}'(\mathsf{m}(\alpha)).$$

- L can't commit to a trading strategy, so APZ define ("steady state") Globally Stable Allocation α_G as:
 - If α_G is reached, L won't wish to trade away from it at market prices corresponding to α_G .
 - From any other allocation, L will be willing to trade to α_G at market prices corresponding to α_G .

Benchmark Equilibrium

Theorem

(APZ 1994) As long as $\Psi(\cdot)$ is strictly concave, there exists a unique globally stable allocation, $\alpha_G = \lambda$, which coincides with the competitive equilibrium allocation.

- Since *L* can't commit to limit trading, she will trade to the competitive allocation.
 - In Walrasian market L pays in full for any anticipated increase in monitoring so she would like to commit to buy less.
 - But, once she has acquired some additional shares, they are
 part of her endowment and she will always want to buy (a bit)
 more to get a bit more risk sharing.
- Full dynamic validity verified by DeMarzo and Urosevic (2006).

Implication: If L has a high risk-bearing capacity (high λ) she **will** acquire large blocks and monitor intensively.

Delegated blocks model: What doesn't change

- Assets and timing essentially unchanged.
- A firm with unit mass of equity shares and Gaussian cash flows
- A risk-free asset in perfectly elastic supply with unit return
- Timeline:
 - Date 1: (Trading) Arbitrary # of rounds of trading in Walrasian market
 - Date 2: (Monitoring) **Monitoring** at intensity m results in equity cash flow $N\left(\mu(m),\sigma^2\right)$, where $\mu^{'}>0,\,\mu^{''}<0$ at cost c(m) with $c^{\prime}>0,\,c^{\prime\prime}>0$
 - Date 3: Cash flows realized

Change I: Agents

- Motivation for studying delegated blockholding:
 - Real-life blockholders are institutional investors who invest on behalf of small, retail savers.
- λ -measure investors are **unskilled**; jointly endowed with $\omega \in (0, \lambda)$.
- (1λ) -measure are **skilled**; jointly endowed with 1ω .
- No infinitesimal agent will ever pay monitoring costs.
- So: allow agents to form positive-measure collectives within their types, i.e., skilled or unskilled.
 - large traders can emerge
- Collectives are subject to incentive compatibility conditions
 - large traders aren't "born," they are "made"
- Skilled investors are sophisticated and can trade (individually or in collectives) and monitor (in collectives)
- Unskilled investors are unsophisticated and cannot trade (individually or in collectives) or monitor (even in collectives)

Change II: Funds

- A **fund** is formed (at the beginning of date 1) when:
 - A collective of unskilled investors (then: Fund Investors "FIs") hires a chosen measure of skilled investors (then: Fund Managers "FMs")
 - Fls and FMs contribute endowments to the fund and agree to a contract
 - FMs make trading and monitoring decisions subject to contractual incentives.
- Interpretation: In real markets there are
 - professional asset managers
 - investors who trade via the professional managers
 - investors who trade directly on own accounts

Change II: Funds

- A **fund** is formed (at the beginning of date 1) when:
 - A collective of unskilled investors (then: Fund Investors "FIs") hires a chosen measure of skilled investors (then: Fund Managers "FMs")
 - Fls and FMs contribute endowments to the fund and agree to a contract
 - FMs make trading and monitoring decisions subject to contractual incentives.
- Interpretation: In real markets there are
 - professional asset managers Model: FMs
 - investors who trade via the professional managers Model: Fls
 - investors who trade directly on own accounts Model: Skilled agents who do not become FMs

Our interest is in optimal delegation: so try to find the fund that is best for FIs. What do FIs want?

Fund Investor "nirvana"

If FIs were skilled and had full commitment power...

...they would **simultaneously** choose optimal trading strategy and optimal monitoring level to obtain:

$\mathsf{Theorem}$

The FIs' full-commitment optimum has an

- **1** optimal monitoring level, m^C , defined by $\omega \mu'(m^C) = c'(m^C)$
- 2 optimal final stake of $\alpha^{C} \equiv \frac{\lambda(1+\omega)}{(1+\lambda)}$

FI "nirvana" looks "schizophrenic":

- They want to diversify so *buy* shares (but not all the way to λ to reflect price impact): $\omega < \alpha^{C} < \lambda$,
- ② But they don't want to monitor at $\alpha^{\mathcal{C}}$ but rather "as if" they hold only $\omega < \alpha^{\mathcal{C}}$, because they would have to pay for all the extra monitoring when they bought their shares.

Let Π_{FI}^{C} denote such full-commitment FI payoffs.

Fund Formation

- We show that it's possible to replicate payoff Π_{FI}^{C} for FIs by forming a single fund involving all λ FIs:
 - \bullet τ mass of FMs
 - a fee f paid by FIs to FMs at entry
 - **3** proportionate split of fund assets: ϕ to FMs and $1-\phi$ to FIs
- To be "feasible", in building this fund we must:
 - Satisfy two no-free-riding conditions:
 - No individual FI can wish to "peel off" from the proposed fund (conditional on its existence).
 - No individual FM can wish to "peel off" from the proposed fund (conditional on its existence).
 - Respect no-commitment by FMs in trading and monitoring decisions within the fund (otherwise we're "breaking the rules of the APZ game")

Derive the optimal fund I: No free riding, no commitment

- Satisfy two no-free-riding conditions:
 - No individual FI can wish to "peel off" from the proposed fund:
 - Funds can form only if no FI has endowment larger than $\hat{\omega} < \lambda$.
 - By defecting, individual FI still benefits from fund's monitoring, but saves the fee and loses risk sharing.
 - No individual FM can wish to "peel off" from the proposed fund:
 - FM's payoff must be equal to payoff of non-FM skilled investor.
- Respect no-commitment by FMs in trading and monitoring decisions within the fund:
 - ullet FMs trade to the new globally stable allocation $lpha_{G}^{D}$ of which
 - FMs own $\phi \alpha_G^D$ and
 - monitor at level $\phi \alpha_G^D \mu'(m) = c'(m)$.

Derive the optimal fund II: Match FI "nirvana"

$\mathsf{Theorem}$

The FIs' full-commitment optimum has an

- optimal monitoring level, m^C , defined by $\omega \mu'(m^C) = c'(m^C)$
- 2 optimal final stake of $\alpha^{\mathsf{C}} \equiv \frac{\lambda(1+\omega)}{(1+\lambda)}$
 - To match the FIs' payoff of Π_{FI}^{C} we must have:
 - (i) $\phi \alpha_G^D = \omega$ to match "nirvana" monitoring
 - (ii) $(1-\phi)\alpha_G^D = \alpha^C$ to match "nirvana" final stake.
 - α_G^D is a function of λ, τ, ϕ . Solve for ϕ^*, τ^* .
 - Set f* to shut down FM-free riding: equalize payoffs of FMs and skilled investors who do not become Fls.

The Optimal Fund

$\mathsf{Theorem}$

There exists $\hat{\omega} \in (0, \lambda)$ s.t. for $\omega \leq \hat{\omega}$, a fund exists that delivers a payoff of Π_{Fl}^{C} for Fls. It is characterized by:

- 1. a mass of FMs $au^* = rac{\left(1 \lambda^2\right)\omega}{1 \lambda\omega}$,
- 2. an allocation of fund assets to FMs $\phi^* = \frac{(1+\lambda)\omega}{2\lambda\omega + \lambda + \omega}$, and
- 3. a fixed fee paid by FIs to FMs

$$f^* = rac{1}{\lambda} \left[c(m^{\mathsf{C}}) + P^{D*}(lpha_G^{D*}) \left((1 - \phi^*)(\omega + au^* rac{(1 - \omega)}{1 - \lambda}) - \omega
ight) \right]$$

where the superscript D* indicates that the associated function or variable is evaluated at ϕ^* and τ^* .

Intuition: Delegation is Separation

- How does the optimal fund achieve full-commitment FI payoffs even though no investor has any commitment power?
- Answer: Delegation separates risk-sharing from monitoring.
 - ϕ^* and τ^* are chosen to ensure:
 - monitoring at level that is privately optimal for FIs absent risk-sharing considerations
 - FIs get an effective stake that optimizes risk-sharing absent monitoring considerations

Social welfare

- The optimal fund gives FIs everything they could have ever wanted.
- Is this all good news?
 - No! Society suffers. The optimal fund:
 - Holds a <u>smaller stake</u> than a proprietary trader of identical risk tolerance. (<u>Less</u> risk sharing than in APZ)
 - Why? Recall that FIs do not risk share perfectly, get their full commitment level of holding $\omega < \alpha^{\text{C}} < \lambda$.
 - Monitors "as if" it held only ϕ^* of the (already too small) stake that it actually holds! (Much less monitoring than in APZ)
- But it's not all bad news.
 - Society suffers in a market of big funds in comparison to a market full of big proprietary blockholders
 - But if no big propretary blockholders exist, then delegated blocks equilibrium provides (some) risk sharing and (some) monitoring

Applied Implications

Corporate governance

- Block size may not be a good predictor of monitoring intensity: the internal fund structure matters.
 - Block size increases in λ and ω , monitoring **only** increases in ω .
- If active funds endogenously fail to utilize their full risk-bearing capacity, the governance role of index funds (who hold blocks mechanically) becomes of even greater interest.

Asset management

- Investors with relatively high endowments invest in funds where managers take large personal stakes and monitor aggressively.
 - Similar to Hedge Funds
- Investors with relatively low endowments invest in funds where managers take small personal stakes and don't monitor much.
 - Similar to Mutual Funds

Robustness

Recontracting

- Once FMs have traded, will FMs and FIs prefer to dissolve the fund and create another that will monitor more? (i.e., could renegotiation unravel the result?)
- Answer: No. once an effective stake of $\hat{\omega}$ is reached (often in first iteration), FIs will not re-contract due to free riding

Competition

- What if different funds compete for FIs?
- A competing fund might lure Fls away by offering identical risk exposure but no monitoring (e.g. a single-FM fund)
- Free riding makes this viable and attractive
- Holding model exactly fixed: we demonstrate possible "race to the bottom" with respect to monitoring
- But we also show that as long as there's some fixed cost (i.e., not scaling with fund assets) to setting up a competing fund, our optimal fund survives in equilibrium.

Conclusion

Simple model of the economics of delegated blockholding

- Blockholder monitoring is important, but the determinants of long-term block sizes are not well understood
- Existing work studies proprietary blockholders but most blocks are delegated
- We show that delegation has important consequences for block sizes and monitoring
 - Delegation contracts allow for the separation of risk sharing and monitoring motives
 - This can lead to less monitoring and inferior risk sharing relative to proprietary blocks, but gives rise to (some) monitoring and (some) risk sharing where proprietary blocks would not exist
 - Implications for both corporate governance and asset management

