

"Short-sale constraints and real investments"

Gyuri Venter, Copenhagen Business School

Swedish House of Finance Conference on Financial Markets and Corporate Decisions August 19-20, 2019

Short-sale constraints and real investments

Gyuri Venter

Warwick Business School

Stockholm, August 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Research questions

1. How do short-sale constraints influence the informational efficiency of market prices?

- <u>Short-sale constraints</u>: costs of shorting or difficult shorting. Rebate rates (Jones-Lamont, 2002), regulatory or legal restrictions (Almazan et al, 2004), search frictions (Duffie-Garleanu-Pedersen, 2002).
- Informational efficiency: the ability of prices to aggregate / transmit information.
 Forecasting price efficiency (FPE) vs revelatory price efficiency (RPE)
 (Bond-Edmans-Goldstein, 2012).

(Bond-Edmans-Goldstein, 2012).

2. How do they affect the link of prices and economic activity?

Prevalent view about short-sale constraints

"Short-selling improves liquidity and price informativeness in normal times

... but [it] reduces the ability of a firm to raise equity capital or to borrow money, and makes it harder for banks to attract deposits."

(SEC Press Release 2008-211, 19 September 2008)

This paper

• Informational effect of short-sale constraints:

They change the information content of security prices,

- Prices contain less of the information of traders (FPE ↓), but...
- …provide more information to some agents with additional private information (RPE ↑).

hence can have real economic implications.

- These agents are more willing to invest in good/profitable projects (Allocational E ↑).
- **Contribution**: analyze price informativeness under feedback and trading constraints, and to provide an informational argument in support of short-sale constraints.

Structure

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Structure

Structure

Structure (cont'd)

Structure extension (not today)

Model: Outline

- Asset market:
 - Traded security and firm assets are correlated: other firm equity from the industry, or a derivative on the firm.
 - Noisy RE with asymmetric information (Grossman-Stiglitz).
 - Short-sale constraints on some informed traders.
- Firm with investors/short-term creditors:
 - Either invest (roll over short-term) or withdraw.
 - Face strategic complementarities.
 - Have private and public info, i.e., learn from a market price.

1. Asset market: Setup

Securities:

- Risky asset with payoff d ~ N (0, σ²_d), fixed supply S; price p. Noise traders demand u ~ N (0, σ²_u).
- Bond with riskless rate 0, perfectly elastic supply.
- Rational agents: Maximize expected utility with CARA-coefficient α :

$$E\left[-\exp\left(-\alpha W_{i}\right)|\mathcal{I}_{i}\right]$$
,

with W_i final wealth, \mathcal{I}_i information set of trader $i \in [0, 1]$.

- Classes are different in **information**:
 - Informed traders: measure ω , receive signal $s = d + \epsilon$, $\epsilon \sim N(0, \sigma_{\epsilon}^2)$.

- Uninformed: measure 1ω , observe price only.
- 0 ≤ λ < 1 proportion of informed traders are subject to short-sale constraints: x_i ≥ 0.

Equilibrium concept

- Noisy REE: $\{P(s, u), x_I(s, p), x_{IC}(s, p), x_U(s, p)\}$ such that:
- Demands are optimal for informed traders:

$$\max_{x_{l}} E\left[-\exp\left(-\alpha\left[W_{l}^{0}+x_{l}\left(d-p\right)\right]\right)|s,P=p\right],$$
$$\max_{x_{lC}} E\left[-\exp\left(-\alpha\left[W_{lC}^{0}+x_{lC}\left(d-p\right)\right]\right)|s,P=p\right] \text{ s.t. } x_{lC} \ge 0.$$

Demands are optimal for uninformed traders:

$$\max_{x_{U}} E\left[-\exp\left(-\alpha\left[W_{U}^{0}+x_{U}\left(d-p\right)\right]\right)|P=p\right],$$

Market clears:

$$\omega (1 - \lambda) x_{l} (s, P(s, u)) + \omega \lambda x_{lC} (s, P(s, u)) + (1 - \omega) x_{U} (P(s, u)) + u = S$$

Asset prices and short-sale constraints

 With SC (λ > 0), "conjecture and verify" does not work, but derive *F_U* from *MC*.

Kreps (1977), Yuan (2005), Breon-Drish (2015), Pálvölgyi and Venter (2015).

• Plug same linear I demand into MC:

$$\omega (1-\lambda) \frac{\beta_{s} s - p}{\alpha \sigma_{d|s}^{2}} + \omega \lambda \mathbf{1}_{s \geq \frac{1}{\beta_{s}} p} \frac{\beta_{s} s - p}{\alpha \sigma_{d|s}^{2}} + (1-\omega) x_{U}(p) + u = S,$$

and rearrange to obtain

$$\hat{p} = \begin{cases} \frac{1}{C} (s - E) + u & \text{if } s \ge E \\ \frac{1}{D} (s - E) + u & \text{if } s < E, \end{cases}$$

where in equilibrium we must have $\hat{p} = S - (1 - \omega) x_U(p)$, $E = \frac{p}{\beta_s}$, and $D = \frac{1}{1-\lambda}C > C = \frac{\alpha\omega}{\sigma_\epsilon^2}$.

・ロト・西ト・ヨト・ヨー もんぐ

Asset prices and short-sale constraints – Special case: uninformative prior

Theorem

For $\lambda = 0$, there exists a linear equilibrium of the asset market with $P_{GS}(s, u) = s + Cu$ and constant C.

Theorem

For $\lambda > 0$, stock price is given by the piecewise linear equation

$$P_{SC}(s, u) = \begin{cases} s + C(u - E) & \text{if } u < E\\ s + D(u - E) & \text{if } u \ge E \end{cases}$$

with $C = \alpha \sigma_{arepsilon}^2 / \omega$ and $D = C / (1 - \lambda) > C$ and E constants.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Asset prices and short-sale constraints - General case

Theorem

For $\lambda = 0$, there exists a linear equilibrium of the asset market with

 $P_{GS}(s, u) = A + B\left(\frac{1}{C}s + u\right)$ and constants A, B, and C.

Theorem

For $\lambda > 0$, stock price is given by the implicit equation

$$P_{SC}(s,u) = \Psi(\hat{p}(P_{SC}(s,u))),$$

where $\Psi(.)$ is a strictly increasing function and

$$\hat{p}(p) = \begin{cases} \frac{1}{C} \left(s - \frac{p}{\beta_s}\right) + u & \text{if } s \ge \frac{p}{\beta_s} \\ \frac{1}{D} \left(s - \frac{p}{\beta_s}\right) + u & \text{if } s < \frac{p}{\beta_s} \end{cases}$$

with $C = \alpha \sigma_{\varepsilon}^2 / \omega$ and $D = C / (1 - \lambda) > C$ constants.

Price properties and empirical support

- Price informativeness FPE decreases:
 Var [d|P_{SC} = p] > Var [d|P_{GS} = p]
 ...but asymmetrically, as prices that are higher than the signal are more sensitive to the demand shock
- The model predicts:
 - 1 Increase in volatility.
 - Ho (1996), Boehmer, Jones and Zhang (2013).
 - **2** Price discovery is slowed down, especially in down markets.
 - Saffi and Sigurdsson (2011), Beber and Pagano (2013).
 - 3 Announcement-day return (d p; made between date 0 and 1) is more left-skewed, and larger in absolute terms.
 - Reed (2013).
 - Market return (p E [d]; made between date -1 and 0) is less negatively skewed.

• Bris, Goetzmann and Zhu (2007).

2. Learning from prices with short-sale constraints

• Price signal:

$$\hat{p} = \begin{cases} \frac{1}{C} \left(s - \frac{p}{\beta_s} \right) + u & \text{if } s \ge \frac{p}{\beta_s} \\ \frac{1}{D} \left(s - \frac{p}{\beta_s} \right) + u & \text{if } s < \frac{p}{\beta_s} \end{cases}$$

- If informed traders are buying (s ≥ 1/β_s p), the price signal has the same precision as without short-sale constraints.
- If they are shorting (s < ¹/_{β_s}p), demand shock is more prevalent.
 → Under short-sale constraints the same piece of public information *p̂* is a result of a lower s signal.

(日) (同) (三) (三) (三) (○) (○)

Conditional distribution for high private signals

- Suppose one more source of info: $t = d + \eta$ with $\eta \sim N(0, \sigma_t^2)$.
- When t is high, states with $s < \frac{1}{\beta_s}p$ are unlikely given private signal.
- For fixed t and p, those states are even more unlikely under short-sale constraints as they correspond to lower s.

For high t agents, short-sale constraints can help to rule out left tail events. → More precise posterior, RPE ↑.

Short-sale constraints and information percision

Conditional variance without and with short-sale constraints

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Short-sale constraints and information percision (cont'd)

◆□> ◆□> ◆目> ◆目> ◆目 ● のへで

3. Application #1 - Single investor

 Single risk averse investor deciding the scale of investment; observes with private signal t = d + η, η ∼ N (0, σ²_t), and p:

$$E\left[U|t,p\right] = \max_{k} E\left[d|t,p\right]k - \frac{c}{2} \operatorname{Var}\left[d|t,p\right]k^{2}$$

FOC implies

$$k = \frac{E\left[d|t,p\right]}{cVar\left[d|t,p\right]}$$

and we have

$$E\left[U|t,p\right] = \frac{E^2\left[d|t,p\right]}{2cVar\left[d|t,p\right]}$$

- Short-sale constraints can increase the expected utility of an investor with high t via the effect on Var [d|t, p],
 - and unconditional expected utility can be higher too (numerical).

4. Application #2 - Investor coordination: Setup

Investors are risk neutral, receive net payoffs:

	roll over $(i_j=1)$	not $(i_j = 0)$
solvent ($d \geq 1-I$)	1-c	0
fails ($d < 1 - I$)	- <i>c</i>	0

where $c \in (0,1)$, and proportion that rolls over: $I = \int i_j \mathrm{d} j$.

- Investor j receives private signal t_j = d + η_j, η_j ∼ N (0, σ²_t), and observes p.
- Optimal action is to invest iff $Pr(firm solvent|t_j, p) \ge c$.
- Key question: How precisely can an agent predict what others know?

Equilibrium

- Concept: Monotone PBE $(t^*(p), d^*(p))$ such that, for a given p
 - Investor j invests if and only if $t_j \ge t^*(p)$.
 - Firm remains solvent if and only if $d \ge d^*(p)$.

Theorem

In the economy without short-sale constraints, when $\sigma_t \rightarrow 0$, there exists a unique equilibrium with $t^* = d^* = c$.

In the economy with short-sale constraints, when $\sigma_t \rightarrow 0$, there exist either one or two equilibria. The equilibrium with $t^* = d^* = c$ always exists. Moreover, if $p < \beta_s c$, there exists an equilibrium with $t^* = d^* = p/\beta_s$.

・ロト・西ト・ヨト・ヨー シック

No multiplicity for high p

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Multiple equilibria for low p

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Efficiency with short-sale constraints

- FPE \downarrow , RPE \uparrow for a subset of investors.
- $p < \beta_s c$ implies more capital provision in the second equilibrium:
 - A firm with d > 0 has higher probability to remain solvent.
 - Allocational E ↑ in the real economy: more investment in good projects.
- Different from global games with multiplicity, because the second equilibrium is always better: SC provide "positive" public information.
 - In contrast to, e.g., Angeletos-Werning (2006) and Ozdenoren-Yuan (2008).

• (Not welfare.)

Empirical/Policy implications

- When few investors (i.e., no coordination problem): financing is not affected by short-sale constraints.
- When multiple investors:
 - (Tighter) constraint in the market of the asset (higher λ) leads to smaller rollover/coordination risk, i.e., easier/cheaper ST financing.
 - The benefit of short-sale constraints on rollover is more pronounced for high proportion of ST debt...
 - ... and is an inverted U-shaped function of *c*.
- Regulation: if $c \uparrow (return for investors \downarrow)$, increase λ .
 - Tradeoff between worse security market conditions and fewer firm defaults.

Related literature

- Information in asset prices under trading frictions and FPE.
 - E.g. Miller (1977), Diamond-Verrecchia (1987), Yuan (2005, 2006), Bai et al (2006), Wang (2016).
 - \rightarrow Contribution: info effect for real investments (outside security market).

Feedback and RPE.

E.g. Hayek (1945), Leland (1992), Ozdenoren-Yuan (2008), Goldstein-Gümbel (2008),

Goldstein et al (2013), Liu (2015); Bond et al (2010), Bond-Goldstein (2015).

 \rightarrow Contribution: trading constraint in the feedback process.

• Bank runs and global games.

- E.g. Diamond-Dybvig (1983), Morris-Shin (1998, 2002, 2003, 2009).
- \rightarrow Contribution: constraints introduce a broad class of multiple equilibria.

Conclusion

- Due to short-sale constraints, price contains less information (FPE $\downarrow)...$
- ... but it provides more information to some agents with additional information (RPE \uparrow).
- Real effect: these agents are more willing to invest in good/profitable projects.
- In a coordination game it can lead to multiplicity, with the second equilibrium having higher allocative efficiency.
- Broader implications: Trading frictions change the ability of prices to incorporate and transmit information to decision makers.

Appendix

Appendix: Grossman-Stiglitz (1980) equilibrium

- Usual technique to solve the REE:
 - Conjecture price function, derive optimal demands given info, confirm that the price clears the market; see, e.g. Grossman and Stiglitz (1980), Brunnermeier (2001), Vives (2010), Veldkamp (2011).
- Suppose $\lambda = 0$; assume a linear form $P(s, u) = A + B(\frac{1}{C}s + u)$.
- Joint normality implies normal posteriors, so optimization program reduces to a mean-variance problem, and optimal demand is

$$x = \frac{E[d|\mathcal{I}] - p}{\alpha Var[d|\mathcal{I}]}.$$

 I traders know s, price provides no additional information, so optimal I demand is

$$x_{l}(s,p) = \frac{\beta_{s}s - p}{\alpha\sigma_{d|s}^{2}}$$

Appendix: Grossman-Stiglitz (1980) equilibrium (cont'd)

• *U* traders do not observe *s*, but they can partially infer it through the price signal:

$$P(s,u) = p = A + B\left(\frac{1}{C}s + u\right) \implies \hat{p} \equiv \frac{p-A}{B} = \frac{1}{C}s + u.$$

 Combining with their priors, we compute E [d|p] = E [d|p̂] and Var [d|p] = Var [d|p̂], and get uninformed demand

$$x_U(\hat{p}) = rac{eta_{d|\hat{p}}\hat{p} - p}{lpha \sigma_{d|\hat{p}}^2}.$$

Theorem

There exists an equilibrium of the asset market with the price function given in the linear form $P_{GS}(s, u) = A + B\left(\frac{1}{C}s + u\right)$ with appropriate constants A, B, and C.

Appendix: Equilibrium

- Concept: Monotone PBE $(t^{*}(p), d^{*}(p))$ such that, for a given p
 - Investor j invests if and only if $t_j \ge t^*(p)$.
 - Firm avoids bankruptcy if and only if $d \ge d^*(p)$.
- Solution:
 - Critical Mass condition: if creditors with t_j ≥ t^{*} roll over, which is the marginal surviving firm (d^{*})?
 - Individual Optimality condition: if a firm with d ≥ d* stays solvent, what is the optimal t* strategy?

Appendix: Equilibrium without short-sale constraints

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• Unique equilibrium if $\sigma_t \rightarrow 0$, with $t^* = d^* = c$.

Appendix: Equilibria with short-sale constraints

• Two equilibria even when $\sigma_t
ightarrow 0$: (i) $t^* = d^* = c$; or

(ii)
$$t^* = d^* = p/eta_s$$
, only if $p < eta_s c$.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Towards welfare

- Calculate (numerically) the unconditional expected utilities for informed, uninformed and noise traders under short-sale constraints.
 - Latter: traders with CARA, who have to buy *u* units of the risky asset (= constrained "supply-informed" agents).
 - Alternatively, simply calculate expected profits.
- Prices under short-sale constraints reveal less about the signal of informed agents, but uninformed can make more money on noise traders.

Theorem (Proposition)

Under short-sale constraints, the unconditional expected utilities of informed traders are higher/lower than in GS, those of uninformed agents and noise traders are lower than in GS. Overall, "welfare" (= weighted average of expected utilities) is lower under short-sale constraints.