Stripping the discount curve – a robust machine learning approach
Session 3: Term Structure Modelling II
Abstract: We introduce a robust, flexible and easy-to-implement method for estimating the yield curve from Treasury securities. This method is non-parametric and optimally learns basis functions in reproducing Hilbert spaces with an economically motivated smoothness reward. We provide a closed-form solution of our machine learning estimator as a simple kernel ridge regression, which is straightforward and fast to implement. We show in an extensive empirical study on U.S. Treasury securities, that our method strongly dominates all parametric and non-parametric benchmarks. Our method achieves substantially smaller out-of-sample yield and pricing errors, while being robust to outliers and data selection choices. We attribute the superior performance to the optimal trade-off between flexibility and smoothness, which positions our method as the new standard for yield curve estimation.
(Based on joint work with M. Pelger and Y. Ye.)